1,111 research outputs found

    B-splines, PĂłlya curves, and duality

    Get PDF
    AbstractLocal duality between B-splines and PĂłlya curves is examined, mostly from the viewpoint of computer-aided geometric design. Certain known results for the two curve types are shown to be related. A few new results for PĂłlya curves and a curve scheme related to B-splines also follow from these investigations

    Proving Tight Bounds on Univariate Expressions with Elementary Functions in Coq

    Get PDF
    International audienceThe verification of floating-point mathematical libraries requires computing numerical bounds on approximation errors. Due to the tightness of these bounds and the peculiar structure of approximation errors, such a verification is out of the reach of generic tools such as computer algebra systems. In fact, the inherent difficulty of computing such bounds often mandates a formal proof of them. In this paper, we present a tactic for the Coq proof assistant that is designed to automatically and formally prove bounds on univariate expressions. It is based on a formalization of floating-point and interval arithmetic, associated with an on-the-fly computation of Taylor expansions. All the computations are performed inside Coq's logic, in a reflexive setting. This paper also compares our tactic with various existing tools on a large set of examples

    Combined parametric and worst case circuit analysis via Taylor models

    Get PDF
    This paper proposes a novel paradigm to generate a parameterized model of the response of linear circuits with the inclusion of worst case bounds. The methodology leverages the so-called Taylor models and represents parameter-dependent responses in terms of a multivariate Taylor polynomial, in conjunction with an interval remainder accounting for the approximation error. The Taylor model representation is propagated from input parameters to circuit responses through a suitable redefinition of the basic operations, such as addition, multiplication or matrix inversion, that are involved in the circuit solution. Specifically, the remainder is propagated in a conservative way based on the theory of interval analysis. While the polynomial part provides an accurate, analytical and parametric representation of the response as a function of the selected design parameters, the complementary information on the remainder error yields a conservative, yet tight, estimation of the worst case bounds. Specific and novel solutions are proposed to implement complex-valued matrix operations and to overcome well-known issues in the state-of-the-art Taylor model theory, like the determination of the upper and lower bound of the multivariate polynomial part. The proposed framework is applied to the frequency-domain analysis of linear circuits. An in-depth discussion of the fundamental theory is complemented by a selection of relevant examples aimed at illustrating the technique and demonstrating its feasibility and strength
    • …
    corecore