679 research outputs found

    An optimal three-point eighth-order iterative method without memory for solving nonlinear equations with its dynamics

    Full text link
    We present a three-point iterative method without memory for solving nonlinear equations in one variable. The proposed method provides convergence order eight with four function evaluations per iteration. Hence, it possesses a very high computational efficiency and supports Kung and Traub's conjecture. The construction, the convergence analysis, and the numerical implementation of the method will be presented. Using several test problems, the proposed method will be compared with existing methods of convergence order eight concerning accuracy and basin of attraction. Furthermore, some measures are used to judge methods with respect to their performance in finding the basin of attraction.Comment: arXiv admin note: substantial text overlap with arXiv:1508.0174

    Basins of attraction for various Steffensen-Type methods

    Full text link
    The dynamical behavior of different Steffensen-type methods is analyzed. We check the chaotic behaviors alongside the convergence radii (understood as the wideness of the basin of attraction) needed by Steffensen-type methods, that is, derivative-free iteration functions, to converge to a root and compare the results using different numerical tests. We will conclude that the convergence radii (and the stability) of Steffensen-type methods are improved by increasing the convergence order. The computer programming package MATHEMATICA provides a powerful but easy environment for all aspects of numerics. This paper puts on show one of the application of this computer algebra system in finding fixed points of iteration functions.The authors are indebted to the referees for some interesting comments and suggestions. This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02.Cordero Barbero, A.; Soleymani, F.; Torregrosa Sánchez, JR.; Shateyi, S. (2014). Basins of attraction for various Steffensen-Type methods. Journal of Applied Mathematics. 2014. https://doi.org/10.1155/2014/539707S2014Soleymani, F. (2011). Optimal fourth-order iterative method free from derivative. Miskolc Mathematical Notes, 12(2), 255. doi:10.18514/mmn.2011.303Zheng, Q., Zhao, P., Zhang, L., & Ma, W. (2010). Variants of Steffensen-secant method and applications. Applied Mathematics and Computation, 216(12), 3486-3496. doi:10.1016/j.amc.2010.04.058Neta, B., Scott, M., & Chun, C. (2012). Basins of attraction for several methods to find simple roots of nonlinear equations. Applied Mathematics and Computation, 218(21), 10548-10556. doi:10.1016/j.amc.2012.04.017Neta, B., & Scott, M. (2013). On a family of Halley-like methods to find simple roots of nonlinear equations. Applied Mathematics and Computation, 219(15), 7940-7944. doi:10.1016/j.amc.2013.02.035Neta, B., & Chun, C. (2013). On a family of Laguerre methods to find multiple roots of nonlinear equations. Applied Mathematics and Computation, 219(23), 10987-11004. doi:10.1016/j.amc.2013.05.002Neta, B., Chun, C., & Scott, M. (2014). Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations. Applied Mathematics and Computation, 227, 567-592. doi:10.1016/j.amc.2013.11.017Amat, S., Busquier, S., & Plaza, S. (2005). Dynamics of the King and Jarratt iterations. Aequationes mathematicae, 69(3), 212-223. doi:10.1007/s00010-004-2733-yChicharro, F., Cordero, A., Gutiérrez, J. M., & Torregrosa, J. R. (2013). Complex dynamics of derivative-free methods for nonlinear equations. Applied Mathematics and Computation, 219(12), 7023-7035. doi:10.1016/j.amc.2012.12.075Cordero, A., García-Maimó, J., Torregrosa, J. R., Vassileva, M. P., & Vindel, P. (2013). Chaos in King’s iterative family. Applied Mathematics Letters, 26(8), 842-848. doi:10.1016/j.aml.2013.03.012Chun, C., Lee, M. Y., Neta, B., & Džunić, J. (2012). On optimal fourth-order iterative methods free from second derivative and their dynamics. Applied Mathematics and Computation, 218(11), 6427-6438. doi:10.1016/j.amc.2011.12.013Cordero, A., Torregrosa, J. R., & Vindel, P. (2013). Dynamics of a family of Chebyshev–Halley type methods. Applied Mathematics and Computation, 219(16), 8568-8583. doi:10.1016/j.amc.2013.02.042Soleimani, F., Soleymani, F., & Shateyi, S. (2013). Some Iterative Methods Free from Derivatives and Their Basins of Attraction for Nonlinear Equations. Discrete Dynamics in Nature and Society, 2013, 1-10. doi:10.1155/2013/301718Susanto, H., & Karjanto, N. (2009). Newton’s method’s basins of attraction revisited. Applied Mathematics and Computation, 215(3), 1084-1090. doi:10.1016/j.amc.2009.06.041Vrscay, E. R., & Gilbert, W. J. (1987). Extraneous fixed points, basin boundaries and chaotic dynamics for Schr�der and K�nig rational iteration functions. Numerische Mathematik, 52(1), 1-16. doi:10.1007/bf01401018Blanchard, P. (1984). Complex analytic dynamics on the Riemann sphere. Bulletin of the American Mathematical Society, 11(1), 85-142. doi:10.1090/s0273-0979-1984-15240-6Varona, J. L. (2002). Graphic and numerical comparison between iterative methods. The Mathematical Intelligencer, 24(1), 37-46. doi:10.1007/bf03025310Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860McMullen, C. (1987). Families of Rational Maps and Iterative Root-Finding Algorithms. The Annals of Mathematics, 125(3), 467. doi:10.2307/1971408Smale, S. (1985). On the efficiency of algorithms of analysis. Bulletin of the American Mathematical Society, 13(2), 87-122. doi:10.1090/s0273-0979-1985-15391-1Liu, Z., Zheng, Q., & Zhao, P. (2010). A variant of Steffensen’s method of fourth-order convergence and its applications. Applied Mathematics and Computation, 216(7), 1978-1983. doi:10.1016/j.amc.2010.03.028Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2012). A Family of Derivative-Free Methods with High Order of Convergence and Its Application to Nonsmooth Equations. Abstract and Applied Analysis, 2012, 1-15. doi:10.1155/2012/836901Zheng, Q., Li, J., & Huang, F. (2011). An optimal Steffensen-type family for solving nonlinear equations. Applied Mathematics and Computation, 217(23), 9592-9597. doi:10.1016/j.amc.2011.04.035Soleymani, F., Karimi Vanani, S., & Jamali Paghaleh, M. (2012). A Class of Three-Step Derivative-Free Root Solvers with Optimal Convergence Order. Journal of Applied Mathematics, 2012, 1-15. doi:10.1155/2012/56874

    Widening basins of attraction of optimal iterative methods

    Full text link
    [EN] In this work, we analyze the dynamical behavior on quadratic polynomials of a class of derivative-free optimal parametric iterative methods, designed by Khattri and Steihaug. By using their parameter as an accelerator, we develop different methods with memory of orders three, six and twelve, without adding new functional evaluations. Then a dynamical approach is made, comparing each of the proposed methods with the original ones without memory, with the following empiric conclusion: Basins of attraction of iterative schemes with memory are wider and the behavior is more stable. This has been numerically checked by estimating the solution of a practical problem, as the friction factor of a pipe and also of other nonlinear academic problems.This research was supported by Islamic Azad University, Hamedan Branch, Ministerio de Economia y Competitividad MTM2014-52016-C02-2-P and Generalitat Valenciana PROMETEO/2016/089.Bakhtiari, P.; Cordero Barbero, A.; Lotfi, T.; Mahdiani, K.; Torregrosa Sánchez, JR. (2017). Widening basins of attraction of optimal iterative methods. Nonlinear Dynamics. 87(2):913-938. https://doi.org/10.1007/s11071-016-3089-2S913938872Amat, S., Busquier, S., Bermúdez, C., Plaza, S.: On two families of high order Newton type methods. Appl. Math. Lett. 25, 2209–2217 (2012)Amat, S., Busquier, S., Bermúdez, C., Magreñán, Á.A.: On the election of the damped parameter of a two-step relaxed Newton-type method. Nonlinear Dyn. 84(1), 9–18 (2016)Chun, C., Neta, B.: An analysis of a family of Maheshwari-based optimal eighth order methods. Appl. Math. Comput. 253, 294–307 (2015)Babajee, D.K.R., Cordero, A., Soleymani, F., Torregrosa, J.R.: On improved three-step schemes with high efficiency index and their dynamics. Numer. Algorithms 65(1), 153–169 (2014)Argyros, I.K., Magreñán, Á.A.: On the convergence of an optimal fourth-order family of methods and its dynamics. Appl. Math. Comput. 252, 336–346 (2015)Petković, M., Neta, B., Petković, L., Džunić, J.: Multipoint Methods for Solving Nonlinear Equations. Academic Press, London (2013)Ostrowski, A.M.: Solution of Equations and System of Equations. Prentice-Hall, Englewood Cliffs, NJ (1964)Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. ACM 21, 643–651 (1974)Khattri, S.K., Steihaug, T.: Algorithm for forming derivative-free optimal methods. Numer. Algorithms 65(4), 809–824 (2014)Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, New York (1964)Cordero, A., Soleymani, F., Torregrosa, J.R., Shateyi, S.: Basins of Attraction for Various Steffensen-Type Methods. J. Appl. Math. 2014, 1–17 (2014)Devaney, R.L.: The Mandelbrot Set, the Farey Tree and the Fibonacci sequence. Am. Math. Mon. 106(4), 289–302 (1999)McMullen, C.: Families of rational maps and iterative root-finding algorithms. Ann. Math. 125(3), 467–493 (1987)Chicharro, F., Cordero, A., Gutiérrez, J.M., Torregrosa, J.R.: Complex dynamics of derivative-free methods for nonlinear equations. Appl. Math. Comput. 219, 70237035 (2013)Magreñán, Á.A.: Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)Neta, B., Chun, C., Scott, M.: Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations. Appl. Math. Comput. 227, 567–592 (2014)Lotfi, T., Magreñán, Á.A., Mahdiani, K., Rainer, J.J.: A variant of Steffensen–King’s type family with accelerated sixth-order convergence and high efficiency index: dynamic study and approach. Appl. Math. Comput. 252, 347–353 (2015)Chicharro, F.I., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. 2013, 1–11 (2013)Cordero, A., Lotfi, T., Torregrosa, J.R., Assari, P., Mahdiani, K.: Some new bi-accelerator two-point methods for solving nonlinear equations. Comput. Appl. Math. 35(1), 251–267 (2016)Cordero, A., Lotfi, T., Bakhtiari, P., Torregrosa, J.R.: An efficient two-parametric family with memory for nonlinear equations. Numer. Algorithms 68(2), 323–335 (2015)Lotfi, T., Mahdiani, K., Bakhtiari, P., Soleymani, F.: Constructing two-step iterative methods with and without memory. Comput. Math. Math. Phys. 55(2), 183–193 (2015)Cordero, A., Maimó, J.G., Torregrosa, J.R., Vassileva, M.P.: Solving nonlinear problems by Ostrowski–Chun type parametric families. J. Math. Chem. 53, 430–449 (2015)Abad, M., Cordero, A., Torregrosa, J.R.: A family of seventh-order schemes for solving nonlinear systems. Bull. Math. Soc. Sci. Math. Roum. Tome 57(105), 133–145 (2014)Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000)White, F.: Fluid Mechanics. McGraw-Hill, Boston (2003)Zheng, Q., Li, J., Huang, F.: An optimal Steffensen-type family for solving nonlinear equations. Appl. Math. Comput. 217, 9592–9597 (2011)Soleymani, F., Babajee, D.K.R., Shateyi, S., Motsa, S.S.: Construction of optimal derivative-free techniques without memory. J. Appl. Math. (2012). doi: 10.1155/2012/49702

    Optimal iterative methods for finding multiple roots of nonlinear equations using weight functions and dynamics

    Full text link
    [EN] In this paper, we propose a family of iterative methods for finding multiple roots, with known multiplicity, by means of the introduction of four univariate weight functions. With the help of these weight functions, that play an important role in the development of higher order convergent iterative techniques, we are able to construct three-point eight-order optimal multiple-root finders. Also, numerical experiments have been applied to a number of test equations for different special schemes from this family satisfying the conditions given in the convergence analysis. We have also compared the basins of attraction of some proposed and known methods in order to check the wideness of the sets of converging initial points for each problem. (C) 2018 Elsevier B.V. All rights reserved.This research was partially supported by Ministerio de Economia y Competitividad, Spain MTM2014-52016-C2-2-P, MTM2015-64013-P and Generalitat Valenciana, Spain PROMETEO/2016/089 and Schlumberger Foundation-Faculty for Future Program.Zafar, F.; Cordero Barbero, A.; Sultana, S.; Torregrosa Sánchez, JR. (2018). Optimal iterative methods for finding multiple roots of nonlinear equations using weight functions and dynamics. Journal of Computational and Applied Mathematics. 342:352-374. https://doi.org/10.1016/j.cam.2018.03.033S35237434

    On improved three-step schemes with high efficiency index and their dynamics

    Full text link
    This paper presents an improvement of the sixth-order method of Chun and Neta as a class of three-step iterations with optimal efficiency index, in the sense of Kung-Traub conjecture. Each member of the presented class reaches the highest possible order using four functional evaluations. Error analysis will be studied and numerical examples are also made to support the theoretical results. We then present results which describe the dynamics of the presented optimal methods for complex polynomials. The basins of attraction of the existing optimal methods and our methods are presented and compared to illustrate their performances.This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and FONDOCYT Republica Dominicana.Babajee, DKR.; Cordero Barbero, A.; Soleymani, F.; Torregrosa Sánchez, JR. (2014). On improved three-step schemes with high efficiency index and their dynamics. Numerical Algorithms. 65(1):153-169. https://doi.org/10.1007/s11075-013-9699-6S153169651Pang, J.S., Chan, D.: Iterative methods for variational and complementary problems. Math. Program. 24(1), 284–313 (1982)Sun, D.: A class of iterative methods for solving nonlinear projection equations. J. Optim. Theory Appl. 91(1), 123–140 (1996)Chun, C., Neta, B.: A new sixth-order scheme for nonlinear equations. Appl. Math. Lett. 25, 185–189 (2012)Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. ACM 21, 643–651 (1974)Neta, B.: A new family of high-order methods for solving equations. Int. J. Comput. Math. 14, 191–195 (1983)Neta, B.: On Popovski’s method for nonlinear equations. Appl. Math. Comput. 201, 710–715 (2008)Chun, C., Neta, B.: Some modifications of Newton’s method by the method of undeterminate coefficients. Comput. Math. Appl. 56, 2528–2538 (2008)Chun, C., Lee, M.Y., Neta, B., Dzunic, J.: On optimal fourth-order iterative methods free from second derivative and their dynamics. Appl. Math. Comput. 218, 6427–6438 (2012)Cordero, A., Torregrosa, J.R., Vassileva, M.P.: Three-step iterative methods with optimal eighth-order convergence. J. Comput. Appl. Math. 235, 3189–3194 (2011)Cordero, A., Torregrosa, J.R., Vassileva, M.P.: A family of modified Ostrowski’s methods with optimal eighth order of convergence. Appl. Math. Lett. 24, 2082–2086 (2011)Heydari, M., Hosseini, S.M., Loghmani, G.B.: On two new families of iterative methods for solving nonlinear equations with optimal order. Appl. Anal. Dis. Math. 5, 93–109 (2011)Neta, B., Petkovic, M.S.: Construction of optimal order nonlinear solvers using inverse interpolation. Appl. Math. Comput. 217, 2448–2445 (2010)Sharifi, M., Babajee, D.K.R., Soleymani, F.: Finding the solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl. 63, 764–774 (2012)Soleymani, F., Karimi Vanani, S., Khan, M., Sharifi, M.: Some modifications of King’s family with optimal eighth order of convergence. Math. Comput. Model. 55, 1373–1380 (2012)Soleymani, F., Karimi Vanani, S., Jamali Paghaleh, M.: A class of three-step derivative-free root solvers with optimal convergence order. J. Appl. Math. 2012, Article ID 568740, 15 pp. (2012). doi: 10.1155/2012/568740Soleymani, F., Sharifi, M., Mousavi, B.S.: An improvement of Ostrowski’s and King’s techniques with optimal convergence order eight. J. Optim. Theory Appl. 153, 225–236 (2012)Stewart, B.D.: Attractor basins of various root-finding methods. M.S. Thesis, Naval Postgraduate School, Department of Applied Mathematics, Monterey, CA (2001)Amat, S., Busquier, S., Plaza, S.: Review of some iterative root-finding methods from a dynamical point of view. Scientia 10, 3–35 (2004)Amat, S., Busquier, S., Plaza, S.: Dynamics of the King and Jarratt iterations. Aequ. Math. 69, 212–223 (2005)Amat, S., Busquier, S., Plaza, S.: Chaotic dynamics of a third-order Newton type method. J. Math. Anal. Appl. 366, 24–32 (2010)Neta, B., Chun, C., Scott, M.: A note on the modified super-Halley method. Appl. Math. Comput. 218, 9575–9577 (2012)Scott, M., Neta, B., Chun, C.: Basin attractors for various methods. Appl. Math. Comput. 218, 2584–2599 (2011)Ardelean, G.: A comparison between iterative methods by using the basins of attraction. Appl. Math. Comput. 218, 88–95 (2011)Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, New York (1964)Babajee, D.K.R.: Analysis of higher order variants of Newton’s method and their applications to differential and integral equations and in ocean acidification. Ph.D. Thesis, University of Mauritius (2010

    Dynamics of some one-point third-order methods for the solution of nonlinear equations

    Get PDF
    The article of record as published may be found at https://doi.org/10.5899/2018/cna-00362In this paper we have considered 32 one-point methods of cubic order to obtain simple zeros of a nonlinear function. These schemes are constructed by decomposition of previously known schemes. We have used the idea of basins of attractions to compare the performance of these methods with Halley's method on 4 polynomial functions and one non-polynomial function. Based on 3 quantitative criteria, namely average number of iterations per point, CPU time required and the number of points for which the method diverge, we have found 4 methods that performed close to best. We also show that decomposing good methods does not necessarily lead to a better one or even to a scheme as good as the original. We found only one example that gave reasonable results and it is the only one with repelling extraneous fixed points on the imaginary axis

    New modification of Maheshwari's method with optimal eighth order convergence for solving nonlinear equations

    Get PDF
    Abstract In this paper, we present a family of three-point with eight-order convergence methods for finding the simple roots of nonlinear equations by suitable approximations and weight function based on Maheshwari's method. Per iteration this method requires three evaluations of the function and one evaluation of its first derivative. These class of methods have the efficiency index equal to 8141.682{8^{{\textstyle{1 \over 4}}}} \approx 1.682. We describe the analysis of the proposed methods along with numerical experiments including comparison with the existing methods. Moreover, the attraction basins of the proposed methods are shown with some comparisons to the other existing methods
    corecore