28,602 research outputs found

    Scalable Microfabrication Procedures for Adhesive-Integrated Flexible and Stretchable Electronic Sensors.

    Get PDF
    New classes of ultrathin flexible and stretchable devices have changed the way modern electronics are designed to interact with their target systems. Though more and more novel technologies surface and steer the way we think about future electronics, there exists an unmet need in regards to optimizing the fabrication procedures for these devices so that large-scale industrial translation is realistic. This article presents an unconventional approach for facile microfabrication and processing of adhesive-peeled (AP) flexible sensors. By assembling AP sensors on a weakly-adhering substrate in an inverted fashion, we demonstrate a procedure with 50% reduced end-to-end processing time that achieves greater levels of fabrication yield. The methodology is used to demonstrate the fabrication of electrical and mechanical flexible and stretchable AP sensors that are peeled-off their carrier substrates by consumer adhesives. In using this approach, we outline the manner by which adhesion is maintained and buckling is reduced for gold film processing on polydimethylsiloxane substrates. In addition, we demonstrate the compatibility of our methodology with large-scale post-processing using a roll-to-roll approach

    Filamentary Switching: Synaptic Plasticity through Device Volatility

    Full text link
    Replicating the computational functionalities and performances of the brain remains one of the biggest challenges for the future of information and communication technologies. Such an ambitious goal requires research efforts from the architecture level to the basic device level (i.e., investigating the opportunities offered by emerging nanotechnologies to build such systems). Nanodevices, or, more precisely, memory or memristive devices, have been proposed for the implementation of synaptic functions, offering the required features and integration in a single component. In this paper, we demonstrate that the basic physics involved in the filamentary switching of electrochemical metallization cells can reproduce important biological synaptic functions that are key mechanisms for information processing and storage. The transition from short- to long-term plasticity has been reported as a direct consequence of filament growth (i.e., increased conductance) in filamentary memory devices. In this paper, we show that a more complex filament shape, such as dendritic paths of variable density and width, can permit the short- and long-term processes to be controlled independently. Our solid-state device is strongly analogous to biological synapses, as indicated by the interpretation of the results from the framework of a phenomenological model developed for biological synapses. We describe a single memristive element containing a rich panel of features, which will be of benefit to future neuromorphic hardware systems

    Thermal dissipation improvement by new technology approach: study, development and characterization

    Get PDF
    Semiconductor manufacturing requires a silicon substrate to build devices on its front side. The wafer must be thick enough to ensure a stable support during the processing steps. Since the active region of a semiconductor device is limited at the substrate surface, there is a large unused material amount. The material excess causes heat increasing during the operation of the devices. Once the Frond End of Line is completed, the excess material must be removed. Nowadays, there are different thinning techniques adopted in order to reduce the thermal resistance. The thesis project idea is the thermal dissipation improvement with a different approach: instead of reducing the wafer thickness, the adopted technology is exploiting the excess material as a heat sink. The realization of this intrinsic heat sink is achieved by the developing of a suitable process flow, which involves the selective dry etching of the silicon bulk and the subsequent electrodeposition of thick copper. This new process flow offers the advantage of maintaining the wafer “self-support” and allow working with already existing technologies saving on both dedicated thinning technologies and handling technologies. Furthermore, this new approach permits the thermal resistance improvement of semiconductor devices if compared to the standard devices

    Diamond semiconductor technology for RF device applications

    Get PDF
    This paper presents a comprehensive review of diamond electronics from the RF perspective. Our aim was to find and present the potential, limitations and current status of diamond semiconductor devices as well as to investigate its suitability for RF device applications. While doing this, we briefly analysed the physics and chemistry of CVD diamond process for a better understanding of the reasons for the technological challenges of diamond material. This leads to Figure of Merit definitions which forms the basis for a technology choice in an RF device/system (such as transceiver or receiver) structure. Based on our literature survey, we concluded that, despite the technological challenges and few mentioned examples, diamond can seriously be considered as a base material for RF electronics, especially RF power circuits, where the important parameters are high speed, high power density, efficient thermal management and low signal loss in high power/frequencies. Simulation and experimental results are highly regarded for the surface acoustic wave (SAW) and field emission (FE) devices which already occupies space in the RF market and are likely to replace their conventional counterparts. Field effect transistors (FETs) are the most promising active devices and extremely high power densities are extracted (up to 30 W/mm). By the surface channel FET approach 81 GHz operation is developed. Bipolar devices are also promising if the deep doping problem can be solved for operation at room temperature. Pressure, thermal, chemical and acceleration sensors have already been demonstrated using micromachining/MEMS approach, but need more experimental results to better exploit thermal, physical/chemical and electronic properties of diamond

    Aeronautical engineering: A continuing bibliography with indexes, supplement 100

    Get PDF
    This bibliography lists 295 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in August 1978

    Pulse position type fluxgate sensors

    Get PDF

    Study of water recovery and solid waste processing for aerospace and domestic applications. Volume 2: Final report

    Get PDF
    The manner in which current and advanced technology can be applied to develop practical solutions to existing and emerging water supply and waste disposal problems is evaluated. An overview of water resource factors as they affect new community planning, and requirements imposed on residential waste treatment systems are presented. The results of equipment surveys contain information describing: commercially available devices and appliances designed to conserve water; devices and techniques for monitoring water quality and controlling back contamination; and advanced water and waste processing equipment. System concepts are developed and compared on the basis of current and projected costs. Economic evaluations are based on community populations of from 2,000 to 250,000. The most promising system concept is defined in sufficient depth to initiate detailed design

    Advanced flight control system study

    Get PDF
    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed

    An intermediate-layer lithography method for producing metal micron/nano patterns and conducting polymer-based microdevices

    Get PDF
    Metals have been widely used in the areas of integration circuit (IC) and microelectromechanical systems (MEMS) fields as materials for gates, contact pads, interconnects, corrosion resistance coatings, rectifying contacts, redundancy memories, heating elements, mechanical parts, magnetic component, etc. due to their good properties, such as high electrical conductivity and good thermal conductivity. Conducting polymers, because of their promising potential to replace silicon and metals in building devices, have attracted great attention in recent decades. Traditional photolithography methods are often used to pattern metals and conducting polymers. However, it cannot be used to fabricate nano patterns because the minimum feature size is limited by wavelength of light. Lithography processes also involve aggressive chemicals, organic solvents, light, or moisture, and thus may affect human health, pollute the environment, and degrade devices. Therefore, a new pattern technique is needed to solve these problems. Soft lithography has been successfully used to fabricate both metal and conducting polymer patterns. The techniques are free of harmful radiations and other chemicals that might alter the properties of the conducting polymer. However, the problems which result from a soft stamp may cause dislocations of patterns or variations of dimensions. The hot embossing process has low cost, high throughout, and high reliability. Also, no chemical etchant or light is involved in this process. On the other hand, it cannot be directly used to pattern metal or conducting polymer. Motivated by a macrocutting process often used in the manufacturing industry to pattern sheet metals, an innovative intermediate-layer lithography (ILL) approach is developed in this work to generate micro/nano patterns in a thin metal or conducting polymer film. In the ILL method, an intermediate layer of PMMA is introduced between a silicon substrate and a thin metal or conducting polymer film. Subsequently, the metal or conducting polymer film is imprinted through a mold insertion using a hot embossing technique. The ILL has been applied to produce various micropatterns in Al, PEDOT, and PPy films. Micro devices, such as heaters, diodes and capacitors, were also fabricated using the ILL method. Metal nanopatterns have been successfully generated using this approach. This dissertation addresses the corresponding fabrication details and gives a numerical interpretation of some interesting experimental phenomena observed
    • 

    corecore