685,198 research outputs found

    Worldwide Use and Impact of the NASA Astrophysics Data System Digital Library

    Full text link
    By combining data from the text, citation, and reference databases with data from the ADS readership logs we have been able to create Second Order Bibliometric Operators, a customizable class of collaborative filters which permits substantially improved accuracy in literature queries. Using the ADS usage logs along with membership statistics from the International Astronomical Union and data on the population and gross domestic product (GDP) we develop an accurate model for world-wide basic research where the number of scientists in a country is proportional to the GDP of that country, and the amount of basic research done by a country is proportional to the number of scientists in that country times that country's per capita GDP. We introduce the concept of utility time to measure the impact of the ADS/URANIA and the electronic astronomical library on astronomical research. We find that in 2002 it amounted to the equivalent of 736 FTE researchers, or $250 Million, or the astronomical research done in France. Subject headings: digital libraries; bibliometrics; sociology of science; information retrievalComment: ADS bibcode: 2005JASIS..56...36K This is a portion (The bibliometric properties of article readership information is the other part) of the article: The NASA Astrophysics Data System: Sociology, bibliometrics and impact, which went on-line in the summer of 200

    Biological invasion costs reveal insufficient proactive management worldwide

    Get PDF
    Funding Information: The authors thank the French National Research Agency (ANR-14-CE02-0021) and the BNP-Paribas Foundation Climate Initiative for funding the InvaCost project and the work on InvaCost database development. The present work was conducted in the frame of InvaCost workshop carried in November 2019 (Paris, France) and funded by the AXA Research Fund Chair of Invasion Biology and is part of the AlienScenario project funded by BiodivERsA and Belmont-Forum call 2018 on biodiversity scenarios. RNC was funded through a Leverhulme Early Career Fellowship (ECF-2021-001) from the Leverhulme Trust and a Humboldt Postdoctoral Fellowship from the Alexander von Humboldt Foundation. DAA is funded by the Kuwait Foundation for the Advancement of Sciences (KFAS) (PR1914SM-01) and the Gulf University for Science and Technology (GUST) internal seed funds (187092 & 234597). CA was funded by the French National Centre for Scientific Research (CNRS). TWB acknowledges funding from the European Union's Horizon 2020 research and innovation programme Marie Skodowska-Curie fellowship (Grant No. 747120). FE was funded through the 2017?2018 Belmont Forum and BiodivERsA joint call for research proposals, under the BiodivScen ERA-Net COFUND programme, and with the funding organisation Austrian Science Foundation FWF (grant I 4011-B32). NK is funded by the basic project of Sukachev Institute of Forest SB RAS, Russia (Project No. 0287-2021-0011; data mining) and the Russian Science Foundation (project No. 21-16-00050; data analysis).Peer reviewedPublisher PD

    Determination of jet energy calibration and transverse momentum resolution in CMS

    Get PDF
    Measurements of the jet energy calibration and transverse momentum resolution in CMS are presented, performed with a data sample collected in proton-proton collisions at a centre-of-mass energy of 7TeV, corresponding to an integrated luminosity of 36pb−1. The transverse momentum balance in dijet and Îł/Z+jets events is used to measure the jet energy response in the CMS detector, as well as the transverse momentum resolution. The results are presented for three different methods to reconstruct jets: a calorimeter-based approach, the ``Jet-Plus-Track'' approach, which improves the measurement of calorimeter jets by exploiting the associated tracks, and the ``Particle Flow'' approach, which attempts to reconstruct individually each particle in the event, prior to the jet clustering, based on information from all relevant subdetectors.We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes. This work was supported by the Austrian Federal Ministry of Science and Research; the Belgium Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Estonian Academy of Sciences and NICPB; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules / CNRS, and Commissariat Ă  l'Énergie Atomique et aux Énergies Alternatives / CEA, France; the Bundesministerium fĂŒr Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece;the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Science and Innovation, New Zealand; the Pakistan Atomic Energy Commission; the State Commission for Scientific Research, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Science and Technologies of the Russian Federation, the Russian Ministry of Atomic Energy and the Russian Foundation for Basic Research; the Ministry of Science and Technological Development of Serbia; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy); the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); and the Council of Science and Industrial Research, India

    Biobanks Go Global

    Get PDF
    Medical research increasingly relies on collections of donated human tissue, such as DNA samples, blood samples and solid organs and tissues. These collections of donated samples – referred to as biobanks, biorepositories or tissue banks – can be used in basic science experiments, population studies, or towards the refinement and personalisation of medical and surgical techniques. The practice of collecting and systematically organising biological samples is not new. Famous historical collections were put together by Carl Linnaeus (1707–78) in Sweden, Georges-Louis Leclerc, Comte de Buffon (1707–88) in France, and Joseph Banks (1743–1820) in England. In recent years, however, advances in experimental techniques (such as whole genome sequencing) and information technologies (such as “big data” storage and analytics) have massively increased the promise of biomedical research using collections of human biological samples. In order for the promise of biobanks to be fulfilled, large numbers of samples need to be collected, stored and analysed. Until recently, most biobanks were located within individual universities, research institutes or health facilities, and often tied to specific research projects. Increasingly, however, biobanks have become “networked” in an effort to become more sustainable and to increase their utility. Most often, these networks of biobanks draw together samples from within a country to create a single biobank that may be accessible to researchers based in different institutions and with different research interests. But even large domestic biobanks or biobank networks like these may still lack the statistical power to answer important research questions. For example, research into the genetics of rare or complex diseases often requires the analysis of samples that number in the hundreds of thousands, if not millions. Maximising the full potential of biobanks is therefore difficult within the confines of a single nation

    Jet momentum dependence of jet quenching in PbPb collisions at √sN N = 2.76 TeV

    Get PDF
    Dijet production in PbPb collisions at a nucleon–nucleon center-of-mass energy of 2.76 TeV is studied with the CMS detector at the LHC. A data sample corresponding to an integrated luminosity of 150 ÎŒb−1 is analyzed. Jets are reconstructed using combined information from tracking and calorimetry, using the anti-kT algorithm with R = 0.3. The dijet momentum balance and angular correlations are studied as a function of collision centrality and leading jet transverse momentum. For the most peripheral PbPb collisions, good agreement of the dijet momentum balance distributions with pp data and reference calculations at the same collision energy is found, while more central collisions show a strong imbalance of leading and subleading jet transverse momenta attributed to the jet-quenching effect. The dijets in central collisions are found to be more unbalanced than the reference, for leading jet transverse momenta up to the highest values studied.We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes. This work was supported by the Austrian Federal Ministry of Science and Research; the Belgium Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Founda- tion, Cyprus; the Ministry of Education and Research, Recurrent financing contract SF0690030s09 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique NuclĂ©aire et de Physique des Particules/CNRS, and Commissariat Ă  l’Énergie Atomique et aux Énergies Alternatives/CEA, France; the Bundesministerium fĂŒr Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Science and Innovation, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a CiĂȘncia e a Tecnologia, Por- tugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Science and Technological Development of Serbia; the Ministerio de Ciencia e InnovaciĂłn, and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation Ă  la Recherche dans l’Indus- trie et dans l’Agriculture (FRIA – Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT – Belgium); the Council of Science and Industrial Research, India; and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund

    Modification of jet shapes in PbPb collisions at √sNN = 2.76 TeV

    Get PDF
    Open Access Under a Creative Commons license.-- et al.The first measurement of jet shapes, defined as the fractional transverse momentum radial distribution, for inclusive jets produced in heavy-ion collisions is presented. Data samples of PbPb and pp collisions, corresponding to integrated luminosities of 150 ÎŒb-1 and 5.3 pb-1 respectively, were collected at a nucleon-nucleon centre-of-mass energy of √sNN=2.76TeV with the CMS detector at the LHC. The jets are reconstructed with the anti-kT algorithm with a distance parameter R = 0.3, and the jet shapes are measured for charged particles with transverse momentum pT > 1GeV/c. The jet shapes measured in PbPb collisions in different collision centralities are compared to reference distributions based on the pp data. A centrality-dependent modification of the jet shapes is observed in the more central PbPb collisions, indicating a redistribution of the energy inside the jet cone. This measurement provides information about the parton shower mechanism in the hot and dense medium produced in heavy-ion collisions. © 2014 The Authors.We acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science and Research; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies(CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Recurrent financing contract SF0690030s09 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique NuclĂ©aire et de Physique des Particules/CNRS, and Commissariat Ă  l’Énergie Atomique et aux Énergies Alternatives/CEA, France; the Bundesministerium fĂŒr Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Science and Innovation, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a CiĂȘncia e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Science and Technological Development of Serbia; the SecretarĂ­a de Estado de InvestigaciĂłn, Desarrollo e InnovaciĂłn and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Austrian Science Fund (FWF); the Belgian Federal Science Policy Office; the Fonds pour la Formation Ă  la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWTBelgium); the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, and the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF.Funded by SCOAPÂł.Peer Reviewe

    Measurement of pion, kaon and proton production in proton–proton collisions at s√=7 TeV

    Get PDF
    The measurement of primary π ±, K±, p and p production at mid-rapidity (|y| < 0.5) in proton–proton collisions at √ s = 7 TeV performed with a large ion collider experiment at the large hadron collider (LHC) is reported. Particle identification is performed using the specific ionisation energy-loss and time-of-flight information, the ringimaging Cherenkov technique and the kink-topology identification of weak decays of charged kaons. Transverse momentum spectra are measured from 0.1 up to 3 GeV/c for pions, from 0.2 up to 6 GeV/c for kaons and from 0.3 up to 6 GeV/c for protons. The measured spectra and particle ratios are compared with quantum chromodynamics-inspired models, tuned to reproduce also the earlier measurements performed at the LHC. Furthermore, the integrated particle yields and ratios as well as the average transverse momenta are compared with results at lower collision energiesThe ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science,World Federation of Scientist (WFS) and Swiss Fonds Kidagan, Armenia, Conselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo Ă  Pesquisa do Estado de SĂŁo Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community’s Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the ‘Region Pays de Loire’, ‘Region Alsace’, ‘Region Auvergne’ and CEA, France; German Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF) and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian Orszagos Tudomanyos Kutatasi Alappgrammok (OTKA) and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) andCentro Fermi – Museo Storico della Fisica eCentro Studi eRicerche “Enrico Fermi”, Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); Consejo Nacional de Cienca y Tecnologia (CONACYT), Direccion General de Asuntos del Personal Academico (DGAPA),MĂ©xico; Amerique Latine Formation academique European Commission (ALFA-EC) and the EPLANET Program (European Particle Physics Latin American Network) Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics and Consiliul National al Cercettrii tiinifice –Executive Agency forHigherEducationResearch Development and Innovation Funding (CNCS-UEFISCDI) – Romania; Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and The Russian Foundation for Basic Research;Ministry of Education of Slovakia; Department of Science and Technology, South Africa; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), E-Infrastructure shared between Europe and Latin America (EELA), Ministerio de EconomĂ­a y Competitividad (MINECO) of Spain, Xunta de Galicia (ConsellerĂ­a de EducaciĂłn), Centro de Aplicaciones Tecnolgicas y Desarrollo Nuclear (CEADEN), CubaenergĂ­a, Cuba, and IAEA (InternationalAtomic EnergyAgency); Swedish Research Council (VR) and Knut and Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio; Ministry of Science, Education and Sports of Croatia and Unity through Knowledge Fund, Croatia. Council of Scientific and Industrial Research (CSIR), New Delhi, IndiaS

    Combined analysis of Belle and Belle II data to determine the CKM angle phi(3) using B+ -> D(K(S)(0)h(+)h(-))h(+) decays

    Get PDF
    [EN] We present a measurement of the Cabibbo-Kobayashi-Maskawa unitarity triangle angle phi(3) (also known as gamma) using a model-independent Dalitz plot analysis of B+ -> D(K(S)(0)h(+)h(-))h(+), where D is either a D-0 or (D) over bar (0) meson and h is either a pi or K. This is the first measurement that simultaneously uses Belle and Belle II data, combining samples corresponding to integrated luminosities of 711 fb(-1) and 128 fb(-1), respectively. All data were accumulated from energy-asymmetric e(+)e(-) collisions at a centre-of-mass energy corresponding to the mass of the Upsilon(4S) resonance. We measure phi(3) = (78.4 +/- 11.4 +/- 0.5 +/- 1.0)degrees, where the first uncertainty is statistical, the second is the experimental systematic uncertainty and the third is from the uncertainties on external measurements of the D-decay strong-phase parameters.We thank Matt Kenzie for help with the GammaCombo package and Anita for calculating the effect of the Belle (II) acceptance on the values of ci and si. We thank the SuperKEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; the KEK computer group for on-site computing support; and the raw-data centers at BNL, DESY, GridKa, IN2P3, and INFN for off-site computing support. This work was supported by the following funding sources: Science Committee of the Republic of Armenia Grant No. 20TTCG-1C010; Australian Research Council and research Grants No. DP180102629, No. DP170102389, No. DP170102204, No. DP150103061, No. FT130100303, No. FT130100018, and No. FT120100745; Austrian Federal Ministry of Education, Science and Research, Austrian Science Fund No. P 31361-N36, and Horizon 2020 ERC Starting Grant No. 947006 "InterLeptons"; Natural Sciences and Engineering Research Council of Canada, Compute Canada and CANARIE; Chinese Academy of Sciences and research Grant No. QYZDJ-SSW-SLH011, National Natural Science Foundation of China and research Grants No. 11521505, No. 11575017, No. 11675166, No. 11761141009, No. 11705209, and No. 11975076, LiaoNing Revitalization Talents Program under Contract No. XLYC1807135, Shanghai Municipal Science and Technology Committee under Contract No. 19ZR1403000, Shanghai Pujiang Program under Grant No. 18PJ1401000, and the CAS Center for Excellence in Particle Physics (CCEPP); the Ministry of Education, Youth, and Sports of the Czech Republic under Contract No. LTT17020 and Charles University Grant No. SVV 260448; European Research Council, Seventh Framework PIEFGA-2013-622527, Horizon 2020 ERC-Advanced Grants No. 267104 and No. 884719, Horizon 2020 ERC-Consolidator Grant No. 819127, Horizon 2020 Marie Sklodowska-Curie Grant Agreement No. 700525 "NIOBE", and Horizon 2020 Marie Sklodowska-Curie RISE project JENNIFER2 Grant Agreement No. 822070 (European grants); L'Institut National de Physique Nucleaire et de Physique des Particules (IN2P3) du CNRS (France); BMBF, DFG, HGF, MPG, and AvH Foundation (Germany); Department of Atomic Energy under Project Identification No. RTI 4002 and Department of Science and Technology (India); Israel Science Foundation Grant No. 2476/17, U.S.-Israel Binational Science Foundation Grant No. 2016113, and Israel Ministry of Science Grant No. 3-16543; Istituto Nazionale di Fisica Nucleare and the research grants BELLE2; Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research Grants No. 16H03968, No. 16H03993, No. 16H06492, No. 16K05323, No. 17H01133, No. 17H05405, No. 18K03621, No. 18H03710, No. 18H05226, No. 19H00682, No. 26220706, and No. 26400255, the National Institute of Informatics, and Science Information NETwork 5 (SINET5), and the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan; National Research Foundation (NRF) of Korea Grants No. 2016R1D1A1B01010135, No. 2016R1D1A1B02012900, No. 2018R1A2B3003643, No. 2018R1A6A1A06024970, No. 2018R1D1A1B07047294, No. 2019K1A3A7A09033840, and No. 2019R1I1A3A01058933, Radiation Science Research Institute, Foreign Largesize Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIAD; Universiti Malaya RU grant, Akademi Sains Malaysia, and Ministry of Education Malaysia; Frontiers of Science Program Contracts No. FOINS-296, No. CB221329, No. CB-236394, No. CB-254409, and No. CB-180023, and No. SEP-CINVESTAV research Grant No. 237 (Mexico); the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Science and Higher Education of the Russian Federation, Agreement No. 14.W03.31.0026, and the HSE University Basic Research Program, Moscow; University of Tabuk research Grants No. S-0256-1438 and No. S0280-1439 (Saudi Arabia); Slovenian Research Agency and research Grants No. J1-9124 and No. P1-0135; Agencia Estatal de Investigacion, Spain Grants No. FPA2014-55613P and No. FPA2017-84445-P, and No. CIDEGENT/2018/020 of Generalitat Valenciana; Ministry of Science and Technology and research Grants No. MOST106-2112-M-002-005MY3 and No. MOST107-2119-M-002-035-MY3, and the Ministry of Education (Taiwan); Thailand Center of Excellence in Physics; TUBITAK ULAKBIM (Turkey); National Research Foundation of Ukraine, project No. 2020.02/0257, and Ministry of Education and Science of Ukraine; the U.S. National Science Foundation and research Grants No. PHY1913789 and No. PHY-2111604, and the U.S. Department of Energy and research Awards No. DE-AC06-76RLO1830, No. DE-SC0007983, No. DE-SC0009824, No. DE-SC0009973, No. DE-SC0010007, No. DE-SC0010073, No. DE-SC0010118, No. DE-SC0010504, No. DESC0011784, No. DE-SC0012704, No. DE-SC0019230, No. DE-SC0021274; and the Vietnam Academy of Science and Technology (VAST) under Grant No. DL0000.05/21-23

    Report on the Twelfth United Nations/European Space Agency Workshop on Basic Space Science

    Full text link
    Pursuant to recommendations of the United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contributed to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) concurrent design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of nonextensive statistical mechanics. Beginning in 2005, the workshops focus on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world-wide instrument arrays as lead by the IHY secretariat.Comment: PDF, 9 page

    Innovation and competitiveness in European biotechnology

    Get PDF
    • 

    corecore