483,420 research outputs found

    On the Question of Effective Sample Size in Network Modeling: An Asymptotic Inquiry

    Get PDF
    The modeling and analysis of networks and network data has seen an explosion of interest in recent years and represents an exciting direction for potential growth in statistics. Despite the already substantial amount of work done in this area to date by researchers from various disciplines, however, there remain many questions of a decidedly foundational nature - natural analogues of standard questions already posed and addressed in more classical areas of statistics - that have yet to even be posed, much less addressed. Here we raise and consider one such question in connection with network modeling. Specifically, we ask, "Given an observed network, what is the sample size?" Using simple, illustrative examples from the class of exponential random graph models, we show that the answer to this question can very much depend on basic properties of the networks expected under the model, as the number of vertices nVn_V in the network grows. In particular, adopting the (asymptotic) scaling of the variance of the maximum likelihood parameter estimates as a notion of effective sample size (neffn_{\mathrm{eff}}), we show that when modeling the overall propensity to have ties and the propensity to reciprocate ties, whether the networks are sparse or not under the model (i.e., having a constant or an increasing number of ties per vertex, respectively) is sufficient to yield an order of magnitude difference in neffn_{\mathrm{eff}}, from O(nV)O(n_V) to O(nV2)O(n^2_V). In addition, we report simulation study results that suggest similar properties for models for triadic (friend-of-a-friend) effects. We then explore some practical implications of this result, using both simulation and data on food-sharing from Lamalera, Indonesia.Comment: Published at http://dx.doi.org/10.1214/14-STS502 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Statistical uncertainty of eddy flux–based estimates of gross ecosystem carbon exchange at Howland Forest, Maine

    Get PDF
    We present an uncertainty analysis of gross ecosystem carbon exchange (GEE) estimates derived from 7 years of continuous eddy covariance measurements of forest-atmosphere CO2fluxes at Howland Forest, Maine, USA. These data, which have high temporal resolution, can be used to validate process modeling analyses, remote sensing assessments, and field surveys. However, separation of tower-based net ecosystem exchange (NEE) into its components (respiration losses and photosynthetic uptake) requires at least one application of a model, which is usually a regression model fitted to nighttime data and extrapolated for all daytime intervals. In addition, the existence of a significant amount of missing data in eddy flux time series requires a model for daytime NEE as well. Statistical approaches for analytically specifying prediction intervals associated with a regression require, among other things, constant variance of the data, normally distributed residuals, and linearizable regression models. Because the NEE data do not conform to these criteria, we used a Monte Carlo approach (bootstrapping) to quantify the statistical uncertainty of GEE estimates and present this uncertainty in the form of 90% prediction limits. We explore two examples of regression models for modeling respiration and daytime NEE: (1) a simple, physiologically based model from the literature and (2) a nonlinear regression model based on an artificial neural network. We find that uncertainty at the half-hourly timescale is generally on the order of the observations themselves (i.e., ∼100%) but is much less at annual timescales (∼10%). On the other hand, this small absolute uncertainty is commensurate with the interannual variability in estimated GEE. The largest uncertainty is associated with choice of model type, which raises basic questions about the relative roles of models and data

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    Challenges in Complex Systems Science

    Get PDF
    FuturICT foundations are social science, complex systems science, and ICT. The main concerns and challenges in the science of complex systems in the context of FuturICT are laid out in this paper with special emphasis on the Complex Systems route to Social Sciences. This include complex systems having: many heterogeneous interacting parts; multiple scales; complicated transition laws; unexpected or unpredicted emergence; sensitive dependence on initial conditions; path-dependent dynamics; networked hierarchical connectivities; interaction of autonomous agents; self-organisation; non-equilibrium dynamics; combinatorial explosion; adaptivity to changing environments; co-evolving subsystems; ill-defined boundaries; and multilevel dynamics. In this context, science is seen as the process of abstracting the dynamics of systems from data. This presents many challenges including: data gathering by large-scale experiment, participatory sensing and social computation, managing huge distributed dynamic and heterogeneous databases; moving from data to dynamical models, going beyond correlations to cause-effect relationships, understanding the relationship between simple and comprehensive models with appropriate choices of variables, ensemble modeling and data assimilation, modeling systems of systems of systems with many levels between micro and macro; and formulating new approaches to prediction, forecasting, and risk, especially in systems that can reflect on and change their behaviour in response to predictions, and systems whose apparently predictable behaviour is disrupted by apparently unpredictable rare or extreme events. These challenges are part of the FuturICT agenda
    • …
    corecore