526 research outputs found

    Adding DL-Lite TBoxes to Proper Knowledge Bases

    Get PDF
    Levesque’s proper knowledge bases (proper KBs) correspond to infinite sets of ground positive and negative facts, with the notable property that for FOL formulas in a certain normal form, which includes conjunctive queries and positive queries possibly extended with a controlled form of negation, entailment reduces to formula evaluation. However proper KBs represent extensional knowledge only. In description logic terms, they correspond to ABoxes. In this paper, we augment them with DL-Lite TBoxes, expressing intensional knowledge (i.e., the ontology of the domain). DL-Lite has the notable property that conjunctive query answering over TBoxes and standard description logic ABoxes is re- ducible to formula evaluation over the ABox only. Here, we investigate whether such a property extends to ABoxes consisting of proper KBs. Specifically, we consider two DL-Lite variants: DL-Literdfs , roughly corresponding to RDFS, and DL-Lite_core , roughly corresponding to OWL 2 QL. We show that when a DL- Lite_rdfs TBox is coupled with a proper KB, the TBox can be compiled away, reducing query answering to evaluation on the proper KB alone. But this reduction is no longer possible when we associate proper KBs with DL-Lite_core TBoxes. Indeed, we show that in the latter case, query answering even for conjunctive queries becomes coNP-hard in data complexity

    Circuit complexity, proof complexity, and polynomial identity testing

    Full text link
    We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity

    Logic Meets Algebra: the Case of Regular Languages

    Full text link
    The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Buchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on automata is an essential complement of this classification: by providing alternative, algebraic characterizations for the classes, it often yields the only opportunity for the design of algorithms that decide expressibility in some logical fragment. We survey the existing results relating the expressibility of regular languages in logical fragments of MSO[S] with algebraic properties of their minimal automata. In particular, we show that many of the best known results in this area share the same underlying mechanics and rely on a very strong relation between logical substitutions and block-products of pseudovarieties of monoid. We also explain the impact of these connections on circuit complexity theory.Comment: 37 page

    New substitution bases for complexity classes

    Get PDF
    The set 0(), the 0 closure of F , is the closure with respect to substitution and concatenation recursion on notation of a set of basic functions comprehending the set F . By improving earlier work, we show that 0() is the substitution closure of a simple function set and characterize well\u2010known function complexity classes as the substitution closure of finite sets of simple functions
    • …
    corecore