381 research outputs found

    Structural and Computational Existence Results for Multidimensional Subshifts

    Get PDF
    Symbolic dynamics is a branch of mathematics that studies the structure of infinite sequences of symbols, or in the multidimensional case, infinite grids of symbols. Classes of such sequences and grids defined by collections of forbidden patterns are called subshifts, and subshifts of finite type are defined by finitely many forbidden patterns. The simplest examples of multidimensional subshifts are sets of Wang tilings, infinite arrangements of square tiles with colored edges, where adjacent edges must have the same color. Multidimensional symbolic dynamics has strong connections to computability theory, since most of the basic properties of subshifts cannot be recognized by computer programs, but are instead characterized by some higher-level notion of computability. This dissertation focuses on the structure of multidimensional subshifts, and the ways in which it relates to their computational properties. In the first part, we study the subpattern posets and Cantor-Bendixson ranks of countable subshifts of finite type, which can be seen as measures of their structural complexity. We show, by explicitly constructing subshifts with the desired properties, that both notions are essentially restricted only by computability conditions. In the second part of the dissertation, we study different methods of defining (classes of ) multidimensional subshifts, and how they relate to each other and existing methods. We present definitions that use monadic second-order logic, a more restricted kind of logical quantification called quantifier extension, and multi-headed finite state machines. Two of the definitions give rise to hierarchies of subshift classes, which are a priori infinite, but which we show to collapse into finitely many levels. The quantifier extension provides insight to the somewhat mysterious class of multidimensional sofic subshifts, since we prove a characterization for the class of subshifts that can extend a sofic subshift into a nonsofic one.Symbolidynamiikka on matematiikan ala, joka tutkii äärettömän pituisten symbolijonojen ominaisuuksia, tai moniulotteisessa tapauksessa äärettömän laajoja symbolihiloja. Siirtoavaruudet ovat tällaisten jonojen tai hilojen kokoelmia, jotka on määritelty kieltämällä jokin joukko äärellisen kokoisia kuvioita, ja äärellisen tyypin siirtoavaruudet saadaan kieltämällä vain äärellisen monta kuviota. Wangin tiilitykset ovat yksinkertaisin esimerkki moniulotteisista siirtoavaruuksista. Ne ovat värillisistä neliöistä muodostettuja tiilityksiä, joissa kaikkien vierekkäisten sivujen on oltava samanvärisiä. Moniulotteinen symbolidynamiikka on vahvasti yhteydessä laskettavuuden teoriaan, sillä monia siirtoavaruuksien perusominaisuuksia ei ole mahdollista tunnistaa tietokoneohjelmilla, vaan korkeamman tason laskennallisilla malleilla. Väitöskirjassani tutkin moniulotteisten siirtoavaruuksien rakennetta ja sen suhdetta niiden laskennallisiin ominaisuuksiin. Ensimmäisessä osassa keskityn tiettyihin äärellisen tyypin siirtoavaruuksien rakenteellisiin ominaisuuksiin: äärellisten kuvioiden muodostamaan järjestykseen ja Cantor-Bendixsonin astelukuun. Halutunlaisia siirtoavaruuksia rakentamalla osoitan, että molemmat ominaisuudet ovat olennaisesti laskennallisten ehtojen rajoittamia. Väitöskirjan toisessa osassa tutkin erilaisia tapoja määritellä moniulotteisia siirtoavaruuksia, sekä sitä, miten nämä tavat vertautuvat toisiinsa ja tunnettuihin siirtoavaruuksien luokkiin. Käsittelen määritelmiä, jotka perustuvat toisen kertaluvun logiikkaan, kvanttorilaajennukseksi kutsuttuun rajoitettuun loogiseen kvantifiointiin, sekä monipäisiin äärellisiin automaatteihin. Näistä kolmesta määritelmästä kahteen liittyy erilliset siirtoavaruuksien hierarkiat, joiden todistan romahtavan äärellisen korkuisiksi. Kvanttorilaajennuksen tutkimus valottaa myös niin kutsuttujen sofisten siirtoavaruuksien rakennetta, jota ei vielä tunneta hyvin: kyseisessä luvussa selvitän tarkasti, mitkä siirtoavaruudet voivat laajentaa sofisen avaruuden ei-sofiseksi.Siirretty Doriast

    Polytopes, Hopf algebras and Quasi-symmetric functions

    Full text link
    In this paper we use the technique of Hopf algebras and quasi-symmetric functions to study the combinatorial polytopes. Consider the free abelian group P\mathcal{P} generated by all combinatorial polytopes. There are two natural bilinear operations on this group defined by a direct product ×\times and a join \divideontimes of polytopes. (P,×)(\mathcal{P},\times) is a commutative associative bigraded ring of polynomials, and RP=(ZP,)\mathcal{RP}=(\mathbb Z\varnothing\oplus\mathcal{P},\divideontimes) is a commutative associative threegraded ring of polynomials. The ring RP\mathcal{RP} has the structure of a graded Hopf algebra. It turns out that P\mathcal{P} has a natural Hopf comodule structure over RP\mathcal{RP}. Faces operators dkd_k that send a polytope to the sum of all its (nk)(n-k)-dimensional faces define on both rings the Hopf module structures over the universal Leibnitz-Hopf algebra Z\mathcal{Z}. This structure gives a ring homomorphism \R\to\Qs\otimes\R, where R\R is P\mathcal{P} or RP\mathcal{RP}. Composing this homomorphism with the characters PnαnP^n\to\alpha^n of P\mathcal{P}, Pnαn+1P^n\to\alpha^{n+1} of RP\mathcal{RP}, and with the counit we obtain the ring homomorphisms f\colon\mathcal{P}\to\Qs[\alpha], f_{\mathcal{RP}}\colon\mathcal{RP}\to\Qs[\alpha], and \F^*:\mathcal{RP}\to\Qs, where FF is the Ehrenborg transformation. We describe the images of these homomorphisms in terms of functional equations, prove that these images are rings of polynomials over Q\mathbb Q, and find the relations between the images, the homomorphisms and the Hopf comodule structures. For each homomorphism f,  fRPf,\;f_{\mathcal{RP}}, and \F the images of two polytopes coincide if and only if they have equal flag ff-vectors. Therefore algebraic structures on the images give the information about flag ff-vectors of polytopes.Comment: 61 page

    Logics of probability for quantum computing and information

    Full text link

    Dynamical Directions in Numeration

    Get PDF
    International audienceWe survey definitions and properties of numeration from a dynamical point of view. That is we focuse on numeration systems, their associated compactifications, and the dynamical systems that can be naturally defined on them. The exposition is unified by the notion of fibred numeration system. A lot of examples are discussed. Various numerations on natural, integral, real or complex numbers are presented with a special attention payed to beta-numeration and its generalisations, abstract numeration systems and shift radix systems. A section of applications ends the paper

    A primordial, mathematical, logical and computable, demonstration (proof) of the family of conjectures known as Goldbach´s

    Get PDF
    licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.In this document, by means of a novel system model and first order topological, algebraic and geometrical free-­‐context formal language (NT-­‐FS&L), first, we describe a new signature for a set of the natural numbers that is rooted in an intensional inductive de-­‐embedding process of both, the tensorial identities of the known as “natural numbers”, and the abstract framework of theirs locus-­‐positional based symbolic representations. Additionally, we describe that NT-­‐FS&L is able to: i.-­‐ Embed the De Morgan´s Laws and the FOL-­‐Peano´s Arithmetic Axiomatic. ii.-­‐ Provide new points of view and perspectives about the succession, precede and addition operations and of their abstract, topological, algebraic, analytic geometrical, computational and cognitive, formal representations. Second, by means of the inductive apparatus of NT-­‐FS&L, we proof that the family of conjectures known as Glodbach’s holds entailment and truth when the reasoning starts from the consistent and finitary axiomatic system herein describedWe wish to thank the Organic Chemistry Institute of the Spanish National Research Council (IQOG/CSIC) for its operative and technical support to the Pedro Noheda Research Group (PNRG). We also thank the Institute for Physical and Information Technologies (ITETI/CSIC) of the Spanish National Research Council for their hospitality. We also thank for their long years of dedicated and kind support Dr. Juan Martínez Armesto (VATC/CSIC), Belén Cabrero Suárez (IQOG/CSIC, Administration), Mar Caso Neira (IQOG/CENQUIOR/CSIC, Library) and David Herrero Ruíz (PNRG/IQOG/CSIC). We wish to thank to Bernabé-­‐Pajares´s brothers (Dr. Manuel Bernabé-­‐Pajares, IQOG/CSIC Structural Chemistry & Biochemistry; Magnetic Nuclear Resonance and Dr. Alberto Bernabé Pajares (Greek Philology and Indo-­‐European Linguistics/UCM), for their kind attention during numerous and kind discussions about space, time, imaging and representation of knowledge, language, transcription mistakes, myths and humans always holding us familiar illusion and passion for knowledge and intellectual progress. We wish to thank Dr. Carlos Cativiela Marín (ISQCH/UNIZAR) for his encouragement and for kind listening and attention. We wish to thank Miguel Lorca Melton for his encouragement and professional point of view as Patent Attorney. Last but not least, our gratitude to Nati, María and Jaime for the time borrowed from a loving husband and father. Finally, we apologize to many who have not been mentioned today, but to whom we are grateful. Finally, let us point out that we specially apologize to many who have been mentioned herein for any possible misunderstanding regarding the sense and intension of their philosophic, scientific and/or technical hard work and milestone ideas; we hope that at least Goldbach, Euler and Feymann do not belong to this last human´s collectivity.Peer reviewe

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Imperial College Computing Student Workshop

    Get PDF
    corecore