168 research outputs found

    Baseline and triangulation geometry in a standard plenoptic camera

    Get PDF
    In this paper, we demonstrate light field triangulation to determine depth distances and baselines in a plenoptic camera. The advancement of micro lenses and image sensors enabled plenoptic cameras to capture a scene from different viewpoints with sufficient spatial resolution. While object distances can be inferred from disparities in a stereo viewpoint pair using triangulation, this concept remains ambiguous when applied in case of plenoptic cameras. We present a geometrical light field model allowing the triangulation to be applied to a plenoptic camera in order to predict object distances or to specify baselines as desired. It is shown that distance estimates from our novel method match those of real objects placed in front of the camera. Additional benchmark tests with an optical design software further validate the model’s accuracy with deviations of less than 0:33 % for several main lens types and focus settings. A variety of applications in the automotive and robotics field can benefit from this estimation model

    Leveraging blur information for plenoptic camera calibration

    Full text link
    This paper presents a novel calibration algorithm for plenoptic cameras, especially the multi-focus configuration, where several types of micro-lenses are used, using raw images only. Current calibration methods rely on simplified projection models, use features from reconstructed images, or require separated calibrations for each type of micro-lens. In the multi-focus configuration, the same part of a scene will demonstrate different amounts of blur according to the micro-lens focal length. Usually, only micro-images with the smallest amount of blur are used. In order to exploit all available data, we propose to explicitly model the defocus blur in a new camera model with the help of our newly introduced Blur Aware Plenoptic (BAP) feature. First, it is used in a pre-calibration step that retrieves initial camera parameters, and second, to express a new cost function to be minimized in our single optimization process. Third, it is exploited to calibrate the relative blur between micro-images. It links the geometric blur, i.e., the blur circle, to the physical blur, i.e., the point spread function. Finally, we use the resulting blur profile to characterize the camera's depth of field. Quantitative evaluations in controlled environment on real-world data demonstrate the effectiveness of our calibrations.Comment: arXiv admin note: text overlap with arXiv:2004.0774

    Efficient and Accurate Disparity Estimation from MLA-Based Plenoptic Cameras

    Get PDF
    This manuscript focuses on the processing images from microlens-array based plenoptic cameras. These cameras enable the capturing of the light field in a single shot, recording a greater amount of information with respect to conventional cameras, allowing to develop a whole new set of applications. However, the enhanced information introduces additional challenges and results in higher computational effort. For one, the image is composed of thousand of micro-lens images, making it an unusual case for standard image processing algorithms. Secondly, the disparity information has to be estimated from those micro-images to create a conventional image and a three-dimensional representation. Therefore, the work in thesis is devoted to analyse and propose methodologies to deal with plenoptic images. A full framework for plenoptic cameras has been built, including the contributions described in this thesis. A blur-aware calibration method to model a plenoptic camera, an optimization method to accurately select the best microlenses combination, an overview of the different types of plenoptic cameras and their representation. Datasets consisting of both real and synthetic images have been used to create a benchmark for different disparity estimation algorithm and to inspect the behaviour of disparity under different compression rates. A robust depth estimation approach has been developed for light field microscopy and image of biological samples

    Blur aware metric depth estimation with multi-focus plenoptic cameras

    Full text link
    While a traditional camera only captures one point of view of a scene, a plenoptic or light-field camera, is able to capture spatial and angular information in a single snapshot, enabling depth estimation from a single acquisition. In this paper, we present a new metric depth estimation algorithm using only raw images from a multi-focus plenoptic camera. The proposed approach is especially suited for the multi-focus configuration where several micro-lenses with different focal lengths are used. The main goal of our blur aware depth estimation (BLADE) approach is to improve disparity estimation for defocus stereo images by integrating both correspondence and defocus cues. We thus leverage blur information where it was previously considered a drawback. We explicitly derive an inverse projection model including the defocus blur providing depth estimates up to a scale factor. A method to calibrate the inverse model is then proposed. We thus take into account depth scaling to achieve precise and accurate metric depth estimates. Our results show that introducing defocus cues improves the depth estimation. We demonstrate the effectiveness of our framework and depth scaling calibration on relative depth estimation setups and on real-world 3D complex scenes with ground truth acquired with a 3D lidar scanner.Comment: 21 pages, 12 Figures, 3 Table

    A Vignetting Model for Light Field Cameras with an Application to Light Field Microscopy

    Get PDF
    International audienceIn standard photography, vignetting is considered mainly as a radiometric effect because it results in a darkening of the edges of the captured image. In this paper, we demonstrate that for light field cameras, vignetting is more than just a radio-metric effect. It modifies the properties of the acquired light field and renders most of the calibration procedures from the literature inadequate. We address the problem by describing a model-and camera-agnostic method to evaluate vignetting in phase space. This enables the synthesis of vignetted pixel values, that, applied to a range of pixels yield images corresponding to the white images that are customarily recorded for calibrating light field cameras. We show that the commonly assumed reference points for microlens-based systems are incorrect approximations to the true optical reference, i.e. the image of the center of the exit pupil. We introduce a novel calibration procedure to determine this optically correct reference point from experimental white images. We describe the changes vignetting imposes on the light field sampling patterns and, therefore, the optical properties of the corresponding virtual cameras using the ECA model [1] and apply these insights to a custom-built light field microscope

    Light field geometry of a standard plenoptic camera

    Get PDF
    The Standard Plenoptic Camera (SPC) is an innovation in photography, allowing for acquiring two-dimensional images focused at different depths, from a single exposure. Contrary to conventional cameras, the SPC consists of a micro lens array and a main lens projecting virtual lenses into object space. For the first time, the present research provides an approach to estimate the distance and depth of refocused images extracted from captures obtained by an SPC. Furthermore, estimates for the position and baseline of virtual lenses which correspond to an equivalent camera array are derived. On the basis of paraxial approximation, a ray tracing model employing linear equations has been developed and implemented using Matlab. The optics simulation tool Zemax is utilized for validation purposes. By designing a realistic SPC, experiments demonstrate that a predicted image refocusing distance at 3.5 m deviates by less than 11% from the simulation in Zemax, whereas baseline estimations indicate no significant difference. Applying the proposed methodology will enable an alternative to the traditional depth map acquisition by disparity analysis.European commisio

    The standard plenoptic camera: applications of a geometrical light field model

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of PhilosophyThe plenoptic camera is an emerging technology in computer vision able to capture a light field image from a single exposure which allows a computational change of the perspective view just as the optical focus, known as refocusing. Until now there was no general method to pinpoint object planes that have been brought to focus or stereo baselines of perspective views posed by a plenoptic camera. Previous research has presented simplified ray models to prove the concept of refocusing and to enhance image and depth map qualities, but lacked promising distance estimates and an efficient refocusing hardware implementation. In this thesis, a pair of light rays is treated as a system of linear functions whose solution yields ray intersections indicating distances to refocused object planes or positions of virtual cameras that project perspective views. A refocusing image synthesis is derived from the proposed ray model and further developed to an array of switch-controlled semi-systolic FIR convolution filters. Their real-time performance is verified through simulation and implementation by means of an FPGA using VHDL programming. A series of experiments is carried out with different lenses and focus settings, where prediction results are compared with those of a real ray simulation tool and processed light field photographs for which a blur metric has been considered. Predictions accurately match measurements in light field photographs and signify deviations of less than 0.35 % in real ray simulation. A benchmark assessment of the proposed refocusing hardware implementation suggests a computation time speed-up of 99.91 % in comparison with a state-of-the-art technique. It is expected that this research supports in the prototyping stage of plenoptic cameras and microscopes as it helps specifying depth sampling planes, thus localising objects and provides a power-efficient refocusing hardware design for full-video applications as in broadcasting or motion picture arts

    Sampling Models in Light Fields

    Get PDF
    What is the actual information contained in light rays filling the 3-D world? Leonardo da Vinci saw the world as an infinite number of radiant pyramids caused by the objects located in it. Nowadays, the radiant pyramid is usually described as a set of light rays with various directions passing through a given point. By recording light rays at every point in space, all the information in a scene can be fully acquired. This work focuses on the analysis of the sampling models of a light field camera, a device dedicated to recording the amount of light traveling through any point along any direction in the 3-D world. In contrast to the conventional photography which only records a 2-D projection of the scene, such camera captures both the geometry information and material properties of a scene by recording 2-D angular data for each point in a 2-D spatial domain. This 4-D data is referred to as the light field. The main goal of this thesis is to utilize this 4-D data from one or multiple light field cameras based on the proposed sampling models for recovering the given scene. We first propose a novel algorithm to recover the depth information from the light field. Based on the analysis of the sampling model, we map the high dimensional light field data to a low dimensional texture signal in the continuous domain modulated by the geometric structure of the scene. We formulate the depth estimation problem as a signal recovery problem with samples at unknown locations. A practical framework is proposed to recover alternately the texture signal and the depth map. We thus acquire not only the depth map with high accuracy but also a compact representation of the light field in the continuous domain. The proposed algorithm performs especially well for scenes with fine geometric structure while also achieving state-of-the-art performance on public data-sets. Secondly, we consider multiple light fields to increase the amount of information captured from the 3-D world. We derive a motion model of the light field camera from the proposed sampling model. Given this motion model, we can extend the field of view to create light field panoramas and perform light-field super-resolution. This can help overcome the shortcoming of limited sensor resolution in current light field cameras. Finally, we propose a novel image based rendering framework to represent light rays in the 3-D space: the circular light field. The circular light field is acquired by taking photos from a circular camera array facing outwards from the center of the rig. We propose a practical framework to capture, register and stitch multiple circular light fields. The information presented in multiple circular light fields allows the creation of any virtual camera view at any chosen location with a 360-degree field of view. The new representation of the light rays can be used to generate high quality contents for virtual reality and augmented reality

    Absolute depth using low-cost light field cameras

    Get PDF
    Digital cameras are increasingly used for measurement tasks within engineering scenarios, often being part of metrology platforms. Existing cameras are well equipped to provide 2D information about the fields of view (FOV) they observe, the objects within the FOV, and the accompanying environments. But for some applications these 2D results are not sufficient, specifically applications that require Z dimensional data (depth data) along with the X and Y dimensional data. New designs of camera systems have previously been developed by integrating multiple cameras to provide 3D data, ranging from 2 camera photogrammetry to multiple camera stereo systems. Many earlier attempts to record 3D data on 2D sensors have been completed, and likewise many research groups around the world are currently working on camera technology but from different perspectives; computer vision, algorithm development, metrology, etc. Plenoptic or Lightfield camera technology was defined as a technique over 100 years ago but has remained dormant as a potential metrology instrument. Lightfield cameras utilize an additional Micro Lens Array (MLA) in front of the imaging sensor, to create multiple viewpoints of the same scene and allow encoding of depth information. A small number of companies have explored the potential of lightfield cameras, but in the majority, these have been aimed at domestic consumer photography, only ever recording scenes as relative scale greyscale images. This research considers the potential for lightfield cameras to be used for world scene metrology applications, specifically to record absolute coordinate data. Specific interest has been paid to a range of low cost lightfield cameras to; understand the functional/behavioural characteristics of the optics, identify potential need for optical and/or algorithm development, define sensitivity, repeatability and accuracy characteristics and limiting thresholds of use, and allow quantified 3D absolute scale coordinate data to be extracted from the images. The novel output of this work is; an analysis of lightfield camera system sensitivity leading to the definition of Active Zones (linear data generation good data) and In-active Zones (non-linear data generation poor data), development of bespoke calibration algorithms that remove radial/tangential distortion from the data captured using any MLA based camera, and, a light field camera independent algorithm that allows the delivery of 3D coordinate data in absolute units within a well-defined measurable range from a given camera

    Light field image processing: an overview

    Get PDF
    Light field imaging has emerged as a technology allowing to capture richer visual information from our world. As opposed to traditional photography, which captures a 2D projection of the light in the scene integrating the angular domain, light fields collect radiance from rays in all directions, demultiplexing the angular information lost in conventional photography. On the one hand, this higher dimensional representation of visual data offers powerful capabilities for scene understanding, and substantially improves the performance of traditional computer vision problems such as depth sensing, post-capture refocusing, segmentation, video stabilization, material classification, etc. On the other hand, the high-dimensionality of light fields also brings up new challenges in terms of data capture, data compression, content editing, and display. Taking these two elements together, research in light field image processing has become increasingly popular in the computer vision, computer graphics, and signal processing communities. In this paper, we present a comprehensive overview and discussion of research in this field over the past 20 years. We focus on all aspects of light field image processing, including basic light field representation and theory, acquisition, super-resolution, depth estimation, compression, editing, processing algorithms for light field display, and computer vision applications of light field data
    • …
    corecore