6,678 research outputs found

    The value of kinetic glomerular filtration rate estimation on medication dosing in acute kidney injury.

    Get PDF
    BackgroundIn acute kidney injury (AKI), medication dosing based on Cockcroft-Gault creatinine clearance (CrCl) or Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) estimated glomerular filtration rates (eGFR) are not valid when serum creatinine (SCr) is not in steady state. The aim of this study was to determine the impact of a kinetic estimating equation that incorporates fluctuations in SCrs on drug dosing in critically ill patients.MethodsWe used data from participants enrolled in the NIH Acute Respiratory Distress Syndrome Network Fluid and Catheters Treatment Trial to simulate drug dosing category changes with the application of the kinetic estimating equation developed by Chen. We evaluated whether kinetic estimation of renal function would change medication dosing categories (≥60, 30-59, 15-29, and <15mL/min) compared with the use of CrCl or CKD-EPI eGFR.ResultsThe use of kinetic CrCl and CKD-EPI eGFR resulted in a large enough change in estimated renal function to require medication dosing recategorization in 19.3% [95 CI 16.8%-21.9%] and 23.4% [95% CI 20.7%-26.1%] of participants, respectively. As expected, recategorization occurred more frequently in those with AKI. When we examined individual days for those with AKI, dosing discordance was observed in 8.5% of total days using the CG CrCl and 10.2% of total days using the CKD-EPI equation compared with the kinetic counterparts.ConclusionIn a critically ill population, use of kinetic estimates of renal function impacted medication dosing in a substantial proportion of AKI participants. Use of kinetic estimates in clinical practice should lower the incidence of medication toxicity as well as avoid subtherapeutic dosing during renal recovery

    Evaluation of Canine Pancreas-Specific Lipase Activity, Lipase Activity, and Trypsin-Like Immunoreactivity in an Experimental Model of Acute Kidney Injury in Dogs.

    Get PDF
    BackgroundDiagnosis of pancreatitis in dogs is complicated by extrapancreatic disorders that can alter the results of laboratory tests. Extrapancreatic disorders can also affect the diagnosis of exocrine pancreatic insufficiency (EPI). The effects of acute kidney injury (AKI) on pancreas-specific lipase activity (Spec cPL(®) Test), serum lipase activity and trypsin-like immunoreactivity (TLI) in dogs have not been evaluated.Hypothesis/objectivesSerum Spec cPL, lipase activity, and TLI concentrations will increase secondary to decreased kidney function.AnimalsFive purpose-bred dogs.MethodsExperimental prospective study. Gentamicin was used to induce AKI in 5 purpose-bred dogs. Serum samples were collected for measurement of creatinine, Spec cPL, lipase activity and TLI over 60 days, during both induction of, and recovery from, AKI.ResultsAll dogs developed and recovered from AKI. Six of 52 (12%) serum Spec cPL concentrations were increased (2 in the equivocal zone and 4 consistent with pancreatitis) in 2 of 5 (40%) dogs. Two of 51 (4%) serum lipase activity values were increased in 2 of 5 dogs. Serum TLI was increased above the reference range in 17 of 50 (34%) samples in 3 of 5 dogs. For all biomarkers, there was no consistent correlation with increases in serum creatinine concentration.Conclusions and clinical importanceDecreased renal excretion during experimental AKI did not cause consistent and correlated increases in serum Spec cPL, lipase activity, or TLI in this cohort of dogs

    Acute kidney disease and renal recovery : consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup

    Get PDF
    Consensus definitions have been reached for both acute kidney injury (AKI) and chronic kidney disease (CKD) and these definitions are now routinely used in research and clinical practice. The KDIGO guideline defines AKI as an abrupt decrease in kidney function occurring over 7 days or less, whereas CKD is defined by the persistence of kidney disease for a period of > 90 days. AKI and CKD are increasingly recognized as related entities and in some instances probably represent a continuum of the disease process. For patients in whom pathophysiologic processes are ongoing, the term acute kidney disease (AKD) has been proposed to define the course of disease after AKI; however, definitions of AKD and strategies for the management of patients with AKD are not currently available. In this consensus statement, the Acute Disease Quality Initiative (ADQI) proposes definitions, staging criteria for AKD, and strategies for the management of affected patients. We also make recommendations for areas of future research, which aim to improve understanding of the underlying processes and improve outcomes for patients with AKD

    Serum Cystatin C for the diagnosis of acute Kidney Injury in Patients Admitted in the Emergency Department

    Get PDF
    BACKGROUND: Early diagnosis of acute kidney injury (AKI) at emergency department (ED) is a challenging issue. Current diagnostic criteria for AKI poorly recognize early renal dysfunction and may cause delayed diagnosis. We evaluated the use of serum cystatin C (CysC) for the early and accurate diagnosis of AKI in patients hospitalized from the ED. METHODS: In a total of 198 patients (105 males and 93 females), serum CysC, serum creatinine (sCr), and estimated glomerular filtration rate (eGFR) were calculated at 0, 6, 12, 24, 48, and 72 hours after presentation to the ED. We compared two groups according to the presence or absence of AKI. RESULTS: Serial assessment of CysC, sCr, and eGFR was not a strong, reliable tool to distinguish AKI from non-AKI. CysC > 1.44 mg/L at admission, both alone (Odds Ratio = 5.04; 95%CI 2.20-11.52; P < 0.0002) and in combination with sCr and eGFR (Odds Ratio = 5.71; 95%CI 1.86-17.55; P < 0.002), was a strong predictor for the risk of AKI. CONCLUSIONS: Serial assessment of CysC is not superior to sCr and eGFR in distinguishing AKI from non-AKI. Admission CysC, both alone and in combination with sCr and eGFR, could be considered a powerful tool for the prediction of AKI in ED patients

    Urinary Neutrophil Gelatinase-associated Lipocalin as a Marker for Identification of Acute Kidney Injury and Recovery in Dogs with Gentamicin-induced Nephrotoxicity.

    Get PDF
    BackgroundAcute kidney injury (AKI) is associated with high mortality rates in dogs, which may be a consequence of late recognition using traditional diagnostic tests. Neutrophil gelatinase-associated lipocalin (NGAL) is a protein-induced during kidney injury that may identify AKI earlier than traditional tests.Objectives/hypothesisTo evaluate urinary NGAL (uNGAL) and uNGAL-to-urinary creatinine ratio (UNCR) as early markers of kidney injury and recovery in an AKI model in dogs. It was hypothesized that these markers would document AKI earlier than serum creatinine concentration.AnimalsFive purpose-bred dogs.MethodsProspective study. Acute kidney injury, defined as a &gt; 50% increase in serum creatinine concentration above baseline, was induced in dogs by gentamicin administration (8-10 mg/kg SC q8h). Blood and urine collected for biochemical analyses and uNGAL and urinary creatinine concentrations, respectively, during AKI induction and recovery.ResultsAcute kidney injury was diagnosed significantly earlier based on a 7-fold increase in UNCR compared to a &gt; 50% increase in serum creatinine concentration (day 8; range, 2-10 mg/dl vs day 16; range, 14-19 mg/dl; P = .009). During recovery, the initial decrease in UNCR preceded the decrease in serum creatinine concentration by a median of 2 days. The uNGAL changes paralleled UNCR changes, but the increase in uNGAL was triphasic; the initial peak occurred earlier than UNCR (median, day 11 versus median, day 19).Conclusions and clinical importanceThe UNCR was early marker of gentamicin-induced AKI and its decrease documented onset of renal recovery. Additional studies are needed to validate this marker in dogs with naturally occurring renal injury

    What is the real impact of acute kidney injury?

    Get PDF
    Background: Acute kidney injury (AKI) is a common clinical problem. Studies have documented the incidence of AKI in a variety of populations but to date we do not believe the real incidence of AKI has been accurately documented in a district general hospital setting. The aim here was to describe the detected incidence of AKI in a typical general hospital setting in an unselected population, and describe associated short and long-term outcomes. Methods: A retrospective observational database study from secondary care in East Kent (adult catchment population of 582,300). All adult patients (18 years or over) admitted between 1st February 2009 and 31st July 2009, were included. Patients receiving chronic renal replacement therapy (RRT), maternity and day case admissions were excluded. AKI was defined by the acute kidney injury network (AKIN) criteria. A time dependent risk analysis with logistic regression and Cox regression was used for the analysis of in-hospital mortality and survival. Results: The incidence of AKI in the 6 month period was 15,325 pmp/yr (adults) (69% AKIN1, 18% AKIN2 and 13% AKIN3). In-hospital mortality, length of stay and ITU utilisation all increased with severity of AKI. Patients with AKI had an increase in care on discharge and an increase in hospital readmission within 30 days. Conclusions: This data comes closer to the real incidence and outcomes of AKI managed in-hospital than any study published in the literature to date. Fifteen percent of all admissions sustained an episode of AKI with increased subsequent short and long term morbidity and mortality, even in those with AKIN1. This confers an increased burden and cost to the healthcare economy, which can now be quantified. These results will furnish a baseline for quality improvement projects aimed at early identification, improved management, and where possible prevention, of AKI

    Troponins, Acute Coronary Syndrome and Renal Disease: From Acute Kidney Injury Through End-stage Kidney Disease

    Get PDF
    The diagnosis of acute coronary syndromes (ACS) is heavily dependent on cardiac biomarker assays, particularly cardiac troponins. ACS, particularly non-ST segment elevation MI, are more common in patients with acute kidney injury, chronic kidney disease (CKD) and end-stage kidney disease (ESKD), are associated with worse outcomes than in patients without kidney disease and are often difficult to diagnose and treat. Hence, early accurate diagnosis of ACS in kidney disease patients is important using easily available tools, such as cardiac troponins. However, the diagnostic reliability of cardiac troponins has been suboptimal in patients with kidney disease due to possible decreased clearance of troponin with acute and chronic kidney impairment and low levels of troponin secretion due to concomitant cardiac muscle injury related to left ventricular hypertrophy, inflammation and fibrosis. This article reviews the metabolism and utility of cardiac biomarkers in patients with acute and chronic kidney diseases. Cardiac troponins are small peptides that accumulate in both acute and chronic kidney diseases due to impaired excretion. Hence, troponin concentrations rise and fall with acute kidney injury and its recovery, limiting their use in the diagnosis of ACS. Troponin concentrations are chronically elevated in CKD and ESKD, are associated with poor prognosis and decrease the sensitivity and specificity for diagnosis of ACS. Yet, the evidence indicates that the use of high-sensitivity troponins can confirm or exclude a diagnosis of ACS in the emergency room in a significant proportion of kidney disease patients; those patients in whom the results are equivocal may need longer in-hospital assessment

    The kidney and the elderly : assessment of renal function ; prognosis following renal failure

    Get PDF
    • …
    corecore