31,462 research outputs found

    Design of an automated grinding media charging system for ball mills

    Get PDF
    The parameters of mill load (ML) not only represent the load of the ball mill, but also determine the grinding production ratio (GPR) of the grinding process. Monitoring and recognition of milling conditions have significant effect on the operating efficiency, product quality, and energy and grinding media consumption for the milling circuit. This paper presents an automated grinding media charging system incorporating a multi-agent system developed in Java Agent Development Environment (JADE). A control logix program is designed to determine the precise quantities of grinding media to be charged in an incremental manner such that shock loading is avoided. The multi-agent system created in JADE monitors the power drawn and the mill load of the ball mill such that proper charging conditions are established. High quality of the regulation process is achieved through utilization of the control logix and the multi-agent system

    Analysis of Flexural Strength and Contact Pressure After Simulated Chairside Adjustment of Pressed Lithium Disilicate Glass-Ceramic

    Get PDF
    Statement of problem Research evaluating load-to-failure of pressed lithium disilicate glass-ceramic (LDGC) with a clinically validated test after adjustment and repair procedures is scarce. Purpose The purpose of this in vitro study was to investigate the effect of the simulated chairside adjustment of the intaglio surface of monolithic pressed LDGC and procedures intended to repair damage. Material and methods A total of 423 IPS e.max Press (Ivoclar Vivadent AG) disks (15 mm diameter, 1 mm height) were used in the study. The material was tested by using an equibiaxial loading arrangement (n≥30/group) and a contact pressure test (n≥20/group). Specimens were assigned to 1 of 14 groups. One-half was assigned to the equibiaxial load test and the other half underwent contact pressure testing. Testing was performed in 2 parts, before glazing and after glazing. Before-glazing specimens were devested and entered in the test protocol, while after-glazing specimens were devested and glazed before entering the test protocol. Equibiaxial flexure test specimens were placed on a ring-on-ring apparatus and loaded until failure. Contact pressure specimens were cemented to epoxy resin blocks with a resin cement and loaded with a 50-mm diameter hemisphere until failure. Tests were performed on a universal testing machine with a crosshead speed of 0.5 mm/min. Weibull statistics and likelihood ratio contour plots determined intergroup differences (95% confidence bounds). Results Before glazing, the equibiaxial flexural strength test and the Weibull and likelihood ratio contour plots demonstrated a significantly higher failure strength for 1EC (188 MPa) than that of the damaged and/or repaired groups. Glazing following diamond-adjustment (1EGG) was the most beneficial post-damage procedure (176 MPa). Regarding the contact pressure test, the Weibull and likelihood ratio contour plots revealed no significant difference between the 1PC (98 MPa) and 1PGG (98 MPa) groups. Diamond-adjustment, without glazing (1EG and 1PG), resulted in the next-to-lowest equibiaxial flexure strength and the lowest contact pressure. After glazing, the strength of all the groups, when subjected to glazing following devesting, increased in comparison with corresponding groups in the before-glazing part of the study. Conclusions A glazing treatment improved the mechanical properties of diamond-adjusted IPS e.max Press disks when evaluated by equibiaxial flexure and contact pressure tests. Clinical Implications When adjustments are made on the intaglio surface of a pressed lithium disilicate glass-ceramic, a subsequent glazing treatment is recommended to improve strength

    A comparative study of PSO, GSA and SCA in parameters optimization of surface grinding process

    Get PDF
    The selection of parameters in grinding process remains as a crucial role to guarantee that the machined product quality is at the minimum production cost and maximum production rate. Therefore, it is required to utilize more advance and effective optimization methods to obtain the optimum parameters and resulting an improvement on the grinding performance. In this paper, three optimization algorithms which are particle swarm optimization (PSO), gravitational search, and Sine Cosine algorithms are employed to optimize the grinding process parameters that may either reduce the cost, increase the productivity or obtain the finest surface finish and resulting a higher grinding process performance. The efficiency of the three algorithms are evaluated and comparedwith previous results obtained by other optimization methods on similar studies.The experimental results showed that PSO algorithm achieves better optimization performance in the aspect of convergence rate and accuracy of best solution.Whereas in the comparison of results of previous researchers, the obtained result of PSO proves that it is efficient in solving the complicated mathematical model of surface grinding process with different conditions

    Gentelligent processes in biologically inspired manufacturing

    Get PDF
    Production systems have to meet quality requirements despite increasing product individuality, varying batch sizes and a scarcity of resources. The transfer of experience-based knowledge in a flexible and self-optimizing production and process planning offers the potential to meet these challenges. Biological systems solve conceptually similar challenges pertaining to the transfer of knowledge, flexibility of individual reactions and adaptation over time. Thus, in the context of digital transformation, mechanisms derived from biology are interpreted and applied to the knowledge domain of production technology. To be able to exploit the potential of bio-inspired production systems, genetic and intelligent properties of technical components and machines were identified and brought together under the concept of “Gentelligence”. Expanding upon this concept with the new idea of process-DNA and biologically inspired optimization algorithms facilitates a more flexible, learning and self-optimizing production, which is shown in three different applications. By using the new concept of gentelligent process planning it is possible to determine machine-specific process parameters in turning processes in order to ensure appropriate roughness within the requirements. Furthermore, the combination of the concept with a material removal simulation allows the determination of the resulting process force in tool grinding for subsequent unknown workpiece geometries. As a result of using the process-DNA, a workpiece-independent knowledge transfer and thus process adaptation for shape error compensation becomes possible. Gentelligent production scheduling enables a process-parallel, holistically optimized machine allocation, and as a result, a significantly reduced lead time. © 2020 The Author

    Selected Papers from the 5th International Electronic Conference on Sensors and Applications

    Get PDF
    This Special Issue comprises selected papers from the proceedings of the 5th International Electronic Conference on Sensors and Applications, held on 15–30 November 2018, on sciforum.net, an online platform for hosting scholarly e-conferences and discussion groups. In this 5th edition of the electronic conference, contributors were invited to provide papers and presentations from the field of sensors and applications at large, resulting in a wide variety of excellent submissions and topic areas. Papers which attracted the most interest on the web or that provided a particularly innovative contribution were selected for publication in this collection. These peer-reviewed papers are published with the aim of rapid and wide dissemination of research results, developments, and applications. We hope this conference series will grow rapidly in the future and become recognized as a new way and venue by which to (electronically) present new developments related to the field of sensors and their applications
    • …
    corecore