1,333 research outputs found

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99

    Secure Mutual Self-Authenticable Mechanism for Wearable Devices

    Get PDF
    YesDue to the limited communication range of wearable devices, there is the need for wearable devices to communicate amongst themselves, supporting devices and the internet or to the internet. Most wearable devices are not internet enabled and most often need an internet enabled broker device or intermediate device in order to reach the internet. For a secure end to end communication between these devices security measures like authentication must be put in place in other to prevent unauthorised access to information given the sensitivity of the information collected and transmitted. Therefore, there are other existing authentication solutions for wearable devices but these solutions actively involve from time to time the user of the device which is prone to a lot of challenges. As a solution to these challenges, this paper proposes a secure point-to-point Self-authentication mechanism that involves device to device interaction. This work exploits existing standards and framework like NFC, PPP, EAP etc. in other to achieve a device compatible secure authentication protocol amongst wearable device and supporting devices.

    The survey on Near Field Communication

    Get PDF
    PubMed ID: 26057043Near Field Communication (NFC) is an emerging short-range wireless communication technology that offers great and varied promise in services such as payment, ticketing, gaming, crowd sourcing, voting, navigation, and many others. NFC technology enables the integration of services from a wide range of applications into one single smartphone. NFC technology has emerged recently, and consequently not much academic data are available yet, although the number of academic research studies carried out in the past two years has already surpassed the total number of the prior works combined. This paper presents the concept of NFC technology in a holistic approach from different perspectives, including hardware improvement and optimization, communication essentials and standards, applications, secure elements, privacy and security, usability analysis, and ecosystem and business issues. Further research opportunities in terms of the academic and business points of view are also explored and discussed at the end of each section. This comprehensive survey will be a valuable guide for researchers and academicians, as well as for business in the NFC technology and ecosystem.Publisher's Versio

    Mobile Authentication with NFC enabled Smartphones

    Get PDF
    Smartphones are becoming increasingly more deployed and as such new possibilities for utilizing the smartphones many capabilities for public and private use are arising. This project will investigate the possibility of using smartphones as a platform for authentication and access control, using near field communication (NFC). To achieve the necessary security for authentication and access control purposes, cryptographic concepts such as public keys, challenge-response and digital signatures are used. To focus the investigation a case study is performed based on the authentication and access control needs of an educational institutions student ID. To gain a more practical understanding of the challenges mobile authentication encounters, a prototype has successfully been developed on the basis of the investigation. The case study performed in this project argues that NFC as a standalone technology is not yet mature to support the advanced communication required by this case. However, combining NFC with other communication technologies such as Bluetooth has proven to be effective. As a result, a general evaluation has been performed on several aspects of the prototype, such as cost-effectiveness, usability, performance and security to evaluate the viability of mobile authentication

    Privacy considerations for secure identification in social wireless networks

    Get PDF
    This thesis focuses on privacy aspects of identification and key exchange schemes for mobile social networks. In particular, we consider identification schemes that combine wide area mobile communication with short range communication such as Bluetooth, WiFi. The goal of the thesis is to identify possible security threats to personal information of users and to define a framework of security and privacy requirements in the context of mobile social networking. The main focus of the work is on security in closed groups and the procedures of secure registration, identification and invitation of users in mobile social networks. The thesis includes an evaluation of the proposed identification and key exchange schemes and a proposal for a series of modifications that augments its privacy-preserving capabilities. The ultimate design provides secure and effective identity management in the context of, and in respect to, the protection of user identity privacy in mobile social networks

    Towards end-to-end security in internet of things based healthcare

    Get PDF
    Healthcare IoT systems are distinguished in that they are designed to serve human beings, which primarily raises the requirements of security, privacy, and reliability. Such systems have to provide real-time notifications and responses concerning the status of patients. Physicians, patients, and other caregivers demand a reliable system in which the results are accurate and timely, and the service is reliable and secure. To guarantee these requirements, the smart components in the system require a secure and efficient end-to-end communication method between the end-points (e.g., patients, caregivers, and medical sensors) of a healthcare IoT system. The main challenge faced by the existing security solutions is a lack of secure end-to-end communication. This thesis addresses this challenge by presenting a novel end-to-end security solution enabling end-points to securely and efficiently communicate with each other. The proposed solution meets the security requirements of a wide range of healthcare IoT systems while minimizing the overall hardware overhead of end-to-end communication. End-to-end communication is enabled by the holistic integration of the following contributions. The first contribution is the implementation of two architectures for remote monitoring of bio-signals. The first architecture is based on a low power IEEE 802.15.4 protocol known as ZigBee. It consists of a set of sensor nodes to read data from various medical sensors, process the data, and send them wirelessly over ZigBee to a server node. The second architecture implements on an IP-based wireless sensor network, using IEEE 802.11 Wireless Local Area Network (WLAN). The system consists of a IEEE 802.11 based sensor module to access bio-signals from patients and send them over to a remote server. In both architectures, the server node collects the health data from several client nodes and updates a remote database. The remote webserver accesses the database and updates the webpage in real-time, which can be accessed remotely. The second contribution is a novel secure mutual authentication scheme for Radio Frequency Identification (RFID) implant systems. The proposed scheme relies on the elliptic curve cryptography and the D-Quark lightweight hash design. The scheme consists of three main phases: (1) reader authentication and verification, (2) tag identification, and (3) tag verification. We show that among the existing public-key crypto-systems, elliptic curve is the optimal choice due to its small key size as well as its efficiency in computations. The D-Quark lightweight hash design has been tailored for resource-constrained devices. The third contribution is proposing a low-latency and secure cryptographic keys generation approach based on Electrocardiogram (ECG) features. This is performed by taking advantage of the uniqueness and randomness properties of ECG's main features comprising of PR, RR, PP, QT, and ST intervals. This approach achieves low latency due to its reliance on reference-free ECG's main features that can be acquired in a short time. The approach is called Several ECG Features (SEF)-based cryptographic key generation. The fourth contribution is devising a novel secure and efficient end-to-end security scheme for mobility enabled healthcare IoT. The proposed scheme consists of: (1) a secure and efficient end-user authentication and authorization architecture based on the certificate based Datagram Transport Layer Security (DTLS) handshake protocol, (2) a secure end-to-end communication method based on DTLS session resumption, and (3) support for robust mobility based on interconnected smart gateways in the fog layer. Finally, the fifth and the last contribution is the analysis of the performance of the state-of-the-art end-to-end security solutions in healthcare IoT systems including our end-to-end security solution. In this regard, we first identify and present the essential requirements of robust security solutions for healthcare IoT systems. We then analyze the performance of the state-of-the-art end-to-end security solutions (including our scheme) by developing a prototype healthcare IoT system

    Analysis of the latest trends in mobile commerce using the NFC technology

    Get PDF
    The aim of this research is to propose new mobile commerce proximity payment architecture, based on the analysis of existing solutions and current and future market needs. The idea is to change a Mobile Device into a reliable and secure payment tool, available to everyone and with possibility to securely and easily perform purchases and proximity paymentsThe research leading to these results has received funding by the ARTEMISA project TIN2009-14378-C02-02 within the Spanish "Plan Nacional de I+D+I", and the Madrid regional community projects S2009/TIC-1650 and CCG10-UC3M/TIC-4992

    Product Authentication Using Hash Chains and Printed QR Codes

    Get PDF
    This thesis explores the usage of simple printed tags for authenticating products. Printed tags are a cheap alternative to RFID and other tag based systems and do not require specialized equipment. Due to the simplistic nature of such printed codes, many security issues like tag impersonation, server impersonation, reader impersonation, replay attacks and denial of service present in RFID based solutions need to be handled differently. An algorithm that utilizes hash chains to secure such simple tags while still keeping cost low is discussed. The security characteristics of this scheme as well as other product authentication schemes that use RFID tags are compared. Arguments for static tags being at least as secure as RFID tags is discussed. Finally, a scheme for combining RFID authentication with static tags to achieve security throughout the supply chain is discussed
    corecore