327 research outputs found

    Mobile WiMAX: multi-cell network evaluation and capacity optimization

    Get PDF

    Resource Allocation for Downlink Multi-Cell OFDMA Cognitive Radio Network Using Hungarian Method

    Get PDF
    This paper considers the problem of resource allocation for downlink part of an OFDM-based multi-cell cognitive radio network which consists of multiple secondary transmitters and receivers communicating simultaneously in the presence of multiple primary users. We present a new framework to maximize the total data throughput of secondary users by means of subchannel assignment, while ensuring interference leakage to PUs is below a threshold. In this framework, we first formulate the resource allocation problem as a nonlinear and non-convex optimization problem. Then we represent the problem as a maximum weighted matching in a bipartite graph and propose an iterative algorithm based on Hungarian method to solve it. The present contribution develops an efficient subchannel allocation algorithm that assigns subchannels to the secondary users without the perfect knowledge of fading channel gain between cognitive radio transmitter and primary receivers. The performance of the proposed subcarrier allocation algorithm is compared with a blind subchannel allocation as well as another scheme with the perfect knowledge of channel-state information. Simulation results reveal that a significant performance advantage can still be realized, even if the optimization at the secondary network is based on imperfect network information

    Energy-efficiency for MISO-OFDMA based user-relay assisted cellular networks

    Get PDF
    The concept of improving energy-efficiency (EE) without sacrificing the service quality has become important nowadays. The combination of orthogonal frequency-division multiple-access (OFDMA) multi-antenna transmission technology and relaying is one of the key technologies to deliver the promise of reliable and high-data-rate coverage in the most cost-effective manner. In this paper, EE is studied for the downlink multiple-input single-output (MISO)-OFDMA based user-relay assisted cellular networks. EE maximization is formulated for decode and forward (DF) relaying scheme with the consideration of both transmit and circuit power consumption as well as the data rate requirements for the mobile users. The quality of-service (QoS)-constrained EE maximization, which is defined for multi-carrier, multi-user, multi-relay and multi-antenna networks, is a non-convex and combinatorial problem so it is hard to tackle. To solve this difficult problem, a radio resource management (RRM) algorithm that solves the subcarrier allocation, mode selection and power allocation separately is proposed. The efficiency of the proposed algorithm is demonstrated by numerical results for different system parameter

    An Enhanced Feedback-Base Downlink Packet Scheduling Algorithm for Mobile TV in WIMAX Networks

    Get PDF
    With high speed access network technology like WIMAX, there is the need for efficient management of radio resources where the throughput and Qos requirements for Multicasting Broadcasting Services (MBS) for example TV are to be met. An enhanced feedback-base downlink Packet scheduling algorithm that can be used in IEEE 802.16d/e networks for mobile TV “one way traffic”(MBS) is needed to support many users utilizing multiuser diversity of the broadband of WIMAX systems where a group of users(good/worst channels) share allocated resources (bandwidth). This paper proposes a WIMAX framework feedback-base (like a channel-awareness) downlink packet scheduling algorithm for Mobile TV traffics in IEEE806.16, in which network Physical Timing Slots (PSs) resource blocks are allocated in a dynamic way to mobile TV subscribers based on the Channel State information (CSI) feedback, and then considering users with worst channels with the aim of improving system throughput while system coverage is being guaranteed. The algorithm was examined by changing the PSs bandwidth allocation of the users and different number of users of a cell. Simulation results show our proposed algorithm performed better than other algorithms (blind algorithms) in terms of improvement in system throughput performance. Doi: 10.12777/ijse.5.1.55-62 [How to cite this article: Oyewale, J. and , Juan, L.X.. (2013). An Enhanced Feedback-Base Downlink Packet Scheduling Algorithm for Mobile TV in WIMAX Networks. International Journal of Science and Engineering, 5(1),55-62. Doi: 10.12777/ijse.5.1.55-62

    Resource Allocation for Power Minimization in the Downlink of THP-based Spatial Multiplexing MIMO-OFDMA Systems

    Full text link
    In this work, we deal with resource allocation in the downlink of spatial multiplexing MIMO-OFDMA systems. In particular, we concentrate on the problem of jointly optimizing the transmit and receive processing matrices, the channel assignment and the power allocation with the objective of minimizing the total power consumption while satisfying different quality-of-service requirements. A layered architecture is used in which users are first partitioned in different groups on the basis of their channel quality and then channel assignment and transceiver design are sequentially addressed starting from the group of users with most adverse channel conditions. The multi-user interference among users belonging to different groups is removed at the base station using a Tomlinson-Harashima pre-coder operating at user level. Numerical results are used to highlight the effectiveness of the proposed solution and to make comparisons with existing alternatives.Comment: 12 pages, 6 figures, IEEE Trans. Veh. Techno
    • …
    corecore