1,876 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Coordination and Antenna Domain Formation in Cloud-RAN systems

    Full text link
    We study here the problem of Antenna Domain Formation (ADF) in cloud RAN systems, whereby multiple remote radio-heads (RRHs) are each to be assigned to a set of antenna domains (ADs), such that the total interference between the ADs is minimized. We formulate the corresponding optimization problem, by introducing the concept of \emph{interference coupling coefficients} among pairs of radio-heads. We then propose a low-overhead algorithm that allows the problem to be solved in a distributed fashion, among the aggregation nodes (ANs), and establish basic convergence results. Moreover, we also propose a simple relaxation to the problem, thus enabling us to characterize its maximum performance. We follow a layered coordination structure: after the ADs are formed, radio-heads are clustered to perform coordinated beamforming using the well known Weighted-MMSE algorithm. Finally, our simulations show that using the proposed ADF mechanism would significantly increase the sum-rate of the system (with respect to random assignment of radio-heads).Comment: 7 pages, IEEE International Conference on Communications 2016 (ICC 2016

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Cloud RAN for Mobile Networks - a Technology Overview

    Get PDF
    Cloud Radio Access Network (C-RAN) is a novel mobile network architecture which can address a number of challenges the operators face while trying to support growing end-user’s needs. The main idea behind C-RAN is to pool the Baseband Units (BBUs) from multiple base stations into centralized BBU Pool for statistical multiplexing gain, while shifting the burden to the high-speed wireline transmission of In-phase and Quadrature (IQ) data. C-RAN enables energy efficient network operation and possible cost savings on base- band resources. Furthermore, it improves network capacity by performing load balancing and cooperative processing of signals originating from several base stations. This article surveys the state-of-the-art literature on C-RAN. It can serve as a starting point for anyone willing to understand C-RAN architecture and advance the research on C-RA

    Self-organised multi-objective network clustering for coordinated communications in future wireless networks

    Get PDF
    The fifth generation (5G) cellular system is being developed with a vision of 1000 times more capacity than the fourth generation (4G) systems to cope with ever increasing mobile data traffic. Interference mitigation plays an important role in improving the much needed overall capacity especially in highly interference-limited dense deployment scenarios envisioned for 5G. Coordinated multi-point (CoMP) is identified as a promising interference mitigation technique where multiple base stations (BS) can cooperate for joint transmission/reception by exchanging user/control data and perform joint signal processing to mitigate inter-cell interference and even exploit it as a useful signal. CoMP is already a key feature of long term evolution-advanced (LTE-A) and envisioned as an essential function for 5G. However, CoMP cannot be realized for the whole network due to its computational complexity, synchronization requirement between coordinating BSs and high backhaul capacity requirement. BSs need to be clustered into smaller groups and CoMP can be activated within these smaller clusters. This PhD thesis aims to investigate optimum dynamic CoMP clustering solutions in 5G and beyond wireless networks with massive small cell (SC) deployment. Truly self-organised CoMP clustering algorithms are investigated, aiming to improve much needed spectral efficiency and other network objectives especially load balancing in future wireless networks. Low complexity, scalable, stable and efficient CoMP clustering algorithms are designed to jointly optimize spectral efficiency, load balancing and limited backhaul availability. Firstly, we provide a self organizing, load aware, user-centric CoMP clustering algorithm in a control and data plane separation architecture (CDSA) proposed for 5G to maximize spectral efficiency and improve load balancing. We introduce a novel re-clustering algorithm for user equipment (UE) served by highly loaded cells and show that unsatisfied UEs due to high load can be significantly reduced with minimal impact on spectral efficiency. Clustering with load balancing algorithm exploits the capacity gain from increase in cluster size and also the traffic shift from highly loaded cells to lightly loaded neighbours. Secondly, we develop a novel, low complexity, stable, network-centric clustering model to jointly optimize load balancing and spectral efficiency objectives and tackle the complexity and scalability issues of user-centric clustering. We show that our clustering model provide high spectral efficiency in low-load scenario and better load distribution in high-load scenario resulting in lower number of unsatisfied users while keeping spectral efficiency at comparably high levels. Unsatisfied UEs due to high load are reduced by 68.5%68.5\% with our algorithm when compared to greedy clustering model. In this context, the unique contribution of this work that it is the first attempt to fill the gap in literature for multi-objective, network-centric CoMP clustering, jointly optimizing load balancing and spectral efficiency. Thirdly, we design a novel multi-objective CoMP clustering algorithm to include backhaul-load awareness and tackle one of the biggest challenges for the realization of CoMP in future networks i.e. the demand for high backhaul bandwidth and very low latency. We fill the gap in literature as the first attempt to design a clustering algorithm to jointly optimize backhaul/radio access load and spectral efficiency and analyze the trade-off between them. We employ 2 novel coalitional game theoretic clustering methods, 1-a novel merge/split/transfer coalitional game theoretic clustering algorithm to form backhaul and load aware BS clusters where spectral efficiency is still kept at high level, 2-a novel user transfer game model to move users between clusters to improve load balancing further. Stability and complexity analysis is provided and simulation results are presented to show the performance of the proposed method under different backhaul availability scenarios. We show that average system throughout is increased by 49.9% with our backhaul-load aware model in high load scenario when compared to a greedy model. Finally, we provide an operator's perspective on deployment of CoMP. Firstly, we present the main motivation and benefits of CoMP from an operator's viewpoint. Next, we present operational requirements for CoMP implementation and discuss practical considerations and challenges of such deployment. Possible solutions for these experienced challenges are reviewed. We then present initial results from a UL CoMP trial and discuss changes in key network performance indicators (KPI) during the trial. Additionally, we propose further improvements to the trialed CoMP scheme for better potential gains and give our perspective on how CoMP will fit into the future wireless networks
    • …
    corecore