3,936 research outputs found

    A Covert Channel Using Named Resources

    Full text link
    A network covert channel is created that uses resource names such as addresses to convey information, and that approximates typical user behavior in order to blend in with its environment. The channel correlates available resource names with a user defined code-space, and transmits its covert message by selectively accessing resources associated with the message codes. In this paper we focus on an implementation of the channel using the Hypertext Transfer Protocol (HTTP) with Uniform Resource Locators (URLs) as the message names, though the system can be used in conjunction with a variety of protocols. The covert channel does not modify expected protocol structure as might be detected by simple inspection, and our HTTP implementation emulates transaction level web user behavior in order to avoid detection by statistical or behavioral analysis.Comment: 9 page

    Covert Ephemeral Communication in Named Data Networking

    Full text link
    In the last decade, there has been a growing realization that the current Internet Protocol is reaching the limits of its senescence. This has prompted several research efforts that aim to design potential next-generation Internet architectures. Named Data Networking (NDN), an instantiation of the content-centric approach to networking, is one such effort. In contrast with IP, NDN routers maintain a significant amount of user-driven state. In this paper we investigate how to use this state for covert ephemeral communication (CEC). CEC allows two or more parties to covertly exchange ephemeral messages, i.e., messages that become unavailable after a certain amount of time. Our techniques rely only on network-layer, rather than application-layer, services. This makes our protocols robust, and communication difficult to uncover. We show that users can build high-bandwidth CECs exploiting features unique to NDN: in-network caches, routers' forwarding state and name matching rules. We assess feasibility and performance of proposed cover channels using a local setup and the official NDN testbed

    A Covert Data Transport Protocol

    Full text link
    Both enterprise and national firewalls filter network connections. For data forensics and botnet removal applications, it is important to establish the information source. In this paper, we describe a data transport layer which allows a client to transfer encrypted data that provides no discernible information regarding the data source. We use a domain generation algorithm (DGA) to encode AES encrypted data into domain names that current tools are unable to reliably differentiate from valid domain names. The domain names are registered using (free) dynamic DNS services. The data transmission format is not vulnerable to Deep Packet Inspection (DPI).Comment: 8 pages, 10 figures, conferenc
    • …
    corecore