4,945 research outputs found

    Base Station Cooperation for Confidential Broadcasting in Multi-Cell Networks

    Get PDF
    We design linear precoders that perform confidential broadcasting in multi-cell networks for two different forms of base station (BS) cooperation, namely, multi-cell processing (MCP) and coordinated beamforming (CBf). We consider a twocell network where each cell consists of an N-antenna BS and K single-antenna users. For such a network, we design a linear precoder based on the regularized channel inversion (RCI) for the MCP and a linear precoder based on the generalized RCI for the CBf. For each form of BS cooperation, we derive new channel-independent expressions to approximate the secrecy sum rate achieved by the precoder in the large system regime where K, N → ∞ with a fixed ratio β = K/N. Using these results, we determine the optimal regularization parameters of the RCI and the generalized RCI precoders that maximize the secrecy sum rate for the MCP and the CBf, respectively. We further propose power-reduction strategies that significantly increase the secrecy sum rate at high transmit signal-to-noise ratios when the network load is high. Our numerical results substantiate the derived expressions, verify the optimality of the determined optimal regularization parameters, and demonstrate the performance improvement offered by the proposed power-reduction strategies.ARC Discovery Projects Grant DP15010390

    Regularized Channel Inversion for Simultaneous Confidential Broadcasting and Power Transfer: A Large System Analysis

    Get PDF
    We propose for the first time new transmission schemes based on linear precoding to enable simultaneous confidential broadcasting and power transfer (SCBPT) in a multiuser multi-input single-output (MISO) network, where a BS with N antennas simultaneously transmits power and confidential messages to K single-antenna users. We first design two transmission schemes based on the rules of regularized channel inversion (RCI) for both power splitting (PS) and time switching (TS) receiver architectures, namely, RCI-PS and RCI-TS schemes. For each scheme, we derive channel-independent expressions to approximate the secrecy sum rate and the harvested power in the large-system regime where K, N → ∞ with a fixed ratio β = K/N. Based on the large-system results, we jointly optimize the regularization parameter of the RCI and the PS ratio or the TS ratio such that the secrecy sum rate is maximized subject to an energy-harvesting constraint. We then present the tradeoff between the secrecy sum rate and the harvested power achieved by each scheme, and find that neither scheme always outperforms the other one. Motivated by this fact, we design an RCI-hybrid scheme based on the RCI and a newly proposed hybrid receiver architecture. The hybrid receiver architecture takes advantages of both the PS and TS receiver architectures. We show that the RCI-hybrid scheme outperforms both the RCI-PS and RCI-TS schemes.ARC Discovery Projects Grant DP15010390

    Confidential broadcasting via coordinated beamforming in two-cell networks

    Get PDF
    We design a linear precoder based on the principles of the generalized regularized channel inversion (RCI) precoder that achieves confidential broadcasting in a two-cell network. In each cell of the network, an N-antenna base station (BS) communicates with K single-antenna users. We consider coordinated beamforming where the BSs in the two cells do not share messages but the users in the two cells feed back their channel state information to both BSs. In the precoder design, we determine the optimal regularization parameter that maximizes the secrecy sum rate. To this end, we derive new channel-independent expressions for the secrecy sum rate in the large-system regime, where K and N approach infinity with a fixed ratio µ = K/N. Moreover, we propose a power-reduction strategy that significantly improves the secrecy sum rate at high transmit signal-to-noise ratios when µ is higher than 0.5

    Wireless Physical Layer Security: Towards Practical Assumptions and Requirements

    No full text
    The current research on physical layer security is far from implementations in practical networks, arguably due to impractical assumptions in the literature and the limited applicability of physical layer security. Aiming to reduce the gap between theory and practice, this thesis focuses on wireless physical layer security towards practical assumptions and requirements. In the first half of the thesis, we reduce the dependence of physical layer security on impractical assumptions. The secrecy enhancements and analysis based on impractical assumptions cannot lead to any true guarantee of secrecy in practical networks. The current study of physical layer security was often based on the idealized assumption of perfect channel knowledge on both legitimate users and eavesdroppers. We study the impact of channel estimation errors on secure transmission designs. We investigate the practical scenarios where both the transmitter and the receiver have imperfect channel state information (CSI). Our results show how the optimal transmission design and the achievable throughput vary with the amount of knowledge on the eavesdropper's channel. Apart from the assumption of perfect CSI, the analysis of physical layer security often ideally assumed the number of eavesdropper antennas to be known. We develop an innovative approach to study secure communication systems without knowing the number of eavesdropper antennas by introducing the concept of spatial constraint into physical layer security. That is, the eavesdropper is assumed to have a limited spatial region to place (possibly an infinite number of) antennas. We show that a non-zero secrecy rate is achievable with the help of a friendly jammer, even if the eavesdropper places an infinite number of antennas in its spatial region. In the second half of the thesis, we improve the applicability of physical layer security. The current physical layer security techniques to achieve confidential broadcasting were limited to application in single-cell systems. The primary challenge to achieve confidential broadcasting in the multi-cell network is to deal with not only the inter-cell but also the intra-cell information leakage and interference. To tackle this challenge, we design linear precoders performing confidential broadcasting in multi-cell networks. We optimize the precoder designs to maximize the secrecy sum rate with based on the large-system analysis. Finally, we improve the applicability of physical layer security from a fundamental aspect. The analysis of physical layer security based on the existing secrecy metric was often not applicable in practical networks. We propose new metrics for evaluating the secrecy of transmissions over fading channels to address the practical limitations of using existing secrecy metrics for such evaluations. The first metric establishes a link between the concept of secrecy outage and the eavesdropper's ability to decode confidential messages. The second metric provides an error-probability-based secrecy metric which is often used for the practical implementation of secure wireless systems. The third metric characterizes how much or how fast the confidential information is leaked to the eavesdropper. We show that the proposed secrecy metrics enable one to appropriately design secure communication systems with different views on how secrecy is measured

    A New Look at Physical Layer Security, Caching, and Wireless Energy Harvesting for Heterogeneous Ultra-dense Networks

    Get PDF
    Heterogeneous ultra-dense networks enable ultra-high data rates and ultra-low latency through the use of dense sub-6 GHz and millimeter wave (mmWave) small cells with different antenna configurations. Existing work has widely studied spectral and energy efficiency in such networks and shown that high spectral and energy efficiency can be achieved. This article investigates the benefits of heterogeneous ultra-dense network architecture from the perspectives of three promising technologies, i.e., physical layer security, caching, and wireless energy harvesting, and provides enthusiastic outlook towards application of these technologies in heterogeneous ultra-dense networks. Based on the rationale of each technology, opportunities and challenges are identified to advance the research in this emerging network.Comment: Accepted to appear in IEEE Communications Magazin

    A Survey of Access Control Models in Wireless Sensor Networks

    Get PDF
    Copyright 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/)Wireless sensor networks (WSNs) have attracted considerable interest in the research community, because of their wide range of applications. However, due to the distributed nature of WSNs and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. Resource constraints in sensor nodes mean that security mechanisms with a large overhead of computation and communication are impractical to use in WSNs; security in sensor networks is, therefore, a challenge. Access control is a critical security service that offers the appropriate access privileges to legitimate users and prevents illegitimate users from unauthorized access. However, access control has not received much attention in the context of WSNs. This paper provides an overview of security threats and attacks, outlines the security requirements and presents a state-of-the-art survey on access control models, including a comparison and evaluation based on their characteristics in WSNs. Potential challenging issues for access control schemes in WSNs are also discussed.Peer reviewe
    • …
    corecore