183 research outputs found

    Performance of grassed swale as stormwater quantity control in lowland area

    Get PDF
    Grassed swale is a vegetated open channel designed to attenuate stormwater through infiltration and conveying runoff into nearby water bodies, thus reduces peak flows and minimizes the causes of flood. UTHM is a flood-prone area due to located in lowland area, has high groundwater level and low infiltration rates. The aim of this study is to assess the performance of grassed swale as a stormwater quantity control in UTHM. Flow depths and velocities of swales were measured according to Six-Tenths Depth Method shortly after a rainfall event. Flow discharges of swales (Qswale) were evaluated by Mean- Section Method to determine the variations of Manning’s roughness coefficients (ncalculate) that results between 0.075 – 0.122 due to tall grass and irregularity of channels. Based on the values of Qswale between sections of swales, the percentages of flow attenuation are up to 54%. As for the flow conveyance of swales, Qswale were determined by Manning’s equation that divided into Qcalculate, evaluated using ncalculate, and Qdesign, evaluated using roughness coefficient recommended by MSMA (ndesign), to compare with flow discharges of drainage areas (Qpeak), evaluated by Rational Method with 10-year ARI. Each site of study has shown Qdesign is greater than Qpeak up to 59%. However, Qcalculate is greater than Qpeak only at a certain site of study up to 14%. The values of Qdesign also greater than Qcalculate up to 52% where it shows that the roughness coefficients as considered in MSMA are providing a better performance of swale. This study also found that the characteristics of the studied swales are comparable to the design consideration by MSMA. Based on these findings, grassed swale has the potential in collecting, attenuating, and conveying stormwater, which suitable to be applied as one of the best management practices in preventing flash flood at UTHM campus

    Integrating 2D Mouse Emulation with 3D Manipulation for Visualizations on a Multi-Touch Table

    Get PDF
    We present the Rizzo, a multi-touch virtual mouse that has been designed to provide the fine grained interaction for information visualization on a multi-touch table. Our solution enables touch interaction for existing mouse-based visualizations. Previously, this transition to a multi-touch environment was difficult because the mouse emulation of touch surfaces is often insufficient to provide full information visualization functionality. We present a unified design, combining many Rizzos that have been designed not only to provide mouse capabilities but also to act as zoomable lenses that make precise information access feasible. The Rizzos and the information visualizations all exist within a touch-enabled 3D window management system. Our approach permits touch interaction with both the 3D windowing environment as well as with the contents of the individual windows contained therein. We describe an implementation of our technique that augments the VisLink 3D visualization environment to demonstrate how to enable multi-touch capabilities on all visualizations written with the popular prefuse visualization toolkit.

    Group reaching over digital tabletops with digital arm embodiments

    Get PDF
    In almost all collaborative tabletop tasks, groups require coordinated access to the shared objects on the table’s surface. The physical social norms of close-proximity interactions built up over years of interacting around other physical bodies cause people to avoid interfering with other people (e.g., avoiding grabbing the same object simultaneously). However, some digital tabletop situations require the use of indirect input (e.g., when using mice, and when supporting remote users). With indirect input, people are no longer physically embodied during their reaching gestures, so most systems provide digital embodiments – visual representations of each person – to provide feedback to both the person who is reaching and to the other group members. Tabletop arm embodiments have been shown to better support group interactions than simple visual designs, providing awareness of actions to the group. However, researchers and digital tabletop designers know little of how the design of digital arm embodiments affects the fundamental group tabletop interaction of reaching for objects. Therefore, in this thesis, we evaluate how people coordinate their interactions over digital tabletops when using different types of embodiments. Specifically, in a series of studies, we investigate how the visual design (what they look like) and interaction design (how they work) of digital arm embodiments affects a group’s coordinative behaviours in an open- ended parallel tabletop task. We evaluated visual factors of size, transparency, and realism (through pictures and videos of physical arms), as well as interaction factors of input and augmentations (feedback of interactions), in both a co-located and distributed environment. We found that the visual design had little effect on a group’s ability to coordinate access to shared tabletop items, that embodiment augmentations are useful to support group coordinative actions, and that there are large differences when the person is not physically co-present. Our results demonstrate an initial exploration into the design of digital arm embodiments, providing design guidelines for future researchers and designers to use when designing the next generation of shared digital spaces

    Behavioral patterns of individuals and groups during co-located collaboration on large, high-resolution displays

    Get PDF
    Collaboration among multiple users on large screens leads to complicated behavior patterns and group dynamics. To gain a deeper understanding of collaboration on vertical, large, high-resolution screens, this dissertation builds on previous research and gains novel insights through new observational studies. Among other things, the collected results reveal new patterns of collaborative coupling, suggest that territorial behavior is less critical than shown in previous research, and demonstrate that workspace awareness can also negatively affect the effectiveness of individual users

    Proposition des modèles et de processus structurés pour le développement d’environnements collaboratifs synchrones : application aux réunions de revue de conception

    Get PDF
    Development of collaborative environment is a complex process. The complexity lies in the fact that collaborative environment development involves a lot of decision making. Several tradeoffs need to be made to satisfy current and future requirements from a potentially various set of user profiles. The handling of these complexities poses challenges for researcher, developers and companies. The knowledge required to make suitable design decisions and to rigorously evaluate those design decisions is usually broad, complex, and evolving. In Part-I of this thesis we investigate to formulate the general knowledge about: synchronous collaborative work which conceptualize the problem domain, synchronous collaborative environment which conceptualize the solution domain and synchronous collaborative environment evaluation which conceptualize the evaluation of whole or part of the proposed solution for the specified problem. This formulation has been done through literature study and leaded to the Concept Maps. The results generate three models: SyCoW (synchronous collaborative work), SyCoE (synchronous collaborative environment) and SyCoEE (synchronous collaborative environment evaluation). In Part-II of this thesis we proposed a process for selection/development of collaborative environment, where we demonstrate how SyCoW, SyCoE and SyCoEE support this process in different ways. Through the proposed process we present the development of new synchronous collaborative environment for design review meeting, named, MT-DT. MT-DT has been designed, developed and evaluated by the author in her PhD. MT-DT consist of a multi-touch table with specific 3D software application which support collaborative design review activities. The results of evaluation confirmed the usability of MT-DT and provide arguments for our choices which we made during development of MT-DT.Le développement d'un environnement collaboratif est un processus complexe. La complexité réside dans le fait que ce développement implique beaucoup de prise de décisions. De multiples compromis doivent être faits pour répondre aux exigences actuelles et futures d'utilisateurs aux profils variés. La prise en compte de cette complexité pose des problèmes aux chercheurs, développeurs et utilisateurs. Les informations et données requises pour prendre des décisions adéquates de conception et évaluer rigoureusement ces décisions sont nombreuses, parfois indéterminées et en constante évolution. Dans la partie-I de cette thèse, nous formulons les connaissances générales sur le travail collaboratif synchrone qui constituent l'état de l'art du domaine du problème. Nous pratiquons de même pour les environnements collaboratifs synchrones (domaine de la solution technique) et leur cette formulation s'appuie sur une étude de la littérature et conduit à la proposition de Schéma Conceptuel (Concept Maps). Nous en déduisons trois modèles: SyCoW (travail collaboratif synchrone), SyCoE (environnement collaboratif synchrone) et SyCoEE (évaluation environnement collaboratif synchrone). Dans la partie II de cette thèse, nous proposons un processus pour la sélection / développement d'un environnement collaboratif, où nous démontrons comment les modèles SyCoW, SyCoE et SyCoEE structurent ce processus. Grâce à la mise en œuvre de la démarche proposée, nous présentons le développement d'un nouvel environnement collaboratif synchrone pour une réunion de revue de conception nommé MT-DT. MT-DT a été conçu, développé et évalué par l'auteur dans sa thèse de doctorat. MT-DT est une application logicielle 3D spécifique à une table multi-touche qui assiste les activités de revue de conception collaborative. Les résultats de l'évaluation ont confirmé la convivialité de MT-DT et fournissent des éléments de validation des choix que nous avons faits au cours du développement de MT-DT

    Developing Crisis Training Software for Local Governments – From User Needs to Generic Requirements

    Get PDF
    In this paper we analyze and present the generic requirements identified for a software aiming at supporting crisis management training in local governments. The generic requirements are divided into overall requirements, requirements connected to the trainer’s role and requirements connected to the trainee’s role. Moreover, the requirements are mapped to problems as well as opportunities. Finally, we present examples of elaborations of the addressed requirements based on software design considerations. In our work we applied a design science approach and the artifact presented in this paper is a list of generic requirement. The presented requirements and the systems development process used, provide guidelines for systems analysts and developers in future systems development projects aiming at constructing new software for crisis management training

    Combining Activity Theory and Grounded Theory for the Design of Collaborative Interfaces

    Get PDF
    In remote tabletop collaboration multiple users interact with the system and with each other. Thus, two levels of interaction human-computer interaction and human-human interaction exist in parallel. In order to improve remote tabletop systems for multiple users both levels have to be taken into account. This requires an in-depth analysis achieved by qualitative methods. This paper illustrates how a combination of Activity Theory and Grounded Theory can help researchers and designers to improve and develop better collaborative interfaces. Findings reported here are based on three video recordings that have been collected during a quasi-experiment

    Towards a teacher-centric approach for multi-touch surfaces in classrooms

    Get PDF
    The potential of tabletops to enable simultaneous interaction and face-to-face collaboration can provide novel learning opportunities. Despite significant research in the area of collaborative learning around tabletops, little attention has been paid to the integration of multi-touch surfaces into classroom layouts and how to employ this technology to facilitate teacher-learner dialogue and teacher-led activities across multi-touch surfaces. While most existing techniques focus on the collaboration between learners, this work aims to gain a better understanding of practical challenges that need to be considered when integrating multi-touch surfaces into classrooms. It presents a multi-touch interaction technique, called TablePortal, which enables teachers to manage and monitor collaborative learning on students' tables. Early observations of using the proposed technique within a novel classroom consisting of networked

    Investigating the Impact of Table Size on External Cognition in Collaborative Problem-Solving Tabletop Activities

    Get PDF
    Tables have been used for working and studying for years, and people continue using tables to work with digital artifacts. Collaborative tabletop activities such as planning, designing, and scheduling are common on traditional tables, but digital tables still face a variety of design issues to facilitate doing the same tasks. For example, due to the high cost of digital tables, it is unclear how large a digital table must be to support collaborative problem solving. This thesis examines the impact of physical features, in particular the table size, on collaborative tasks. This research leverages findings of previous studies of traditional and digital tables, and focuses on exploring the interaction of table size and users’ seating arrangement in collaborative problem solving. An experimental study is used to observe the behaviors of two-member groups while doing problem-solving tasks. Two tasks, storytelling and travel planning, were selected for this study, and the experiments were performed on two traditional tables, one small and one large. Although working on digital and traditional tables differs, investigating the impact of physical features in traditional tables can help us better understand how these features interact with workspace awareness and external cognition factors during taskwork. In the empirical study, external cognitive behaviors of participants were deeply analyzed to understand how physical settings of the table and seating arrangement affect the way people manipulate artifacts in the table workspace. Collaborators passed through different stages of problem solving using varied strategies, and the data analysis revealed that they manipulated material on the tabletop for understanding, organizing and solution making through visual separation, cognitive tracing and piling. Table size, task type and user seating arrangement showed strong effects on the external cognition of collaborators. In particular, the accessibility of sufficient space on the table influenced how much users could distribute their materials to improve workspace awareness and cognitive tracing. On the other hand, lack of space or inaccessible space forced people to use the space above the table—by holding materials in their hands—or to pile materials to compensate for space limitations. The insights gained from this research inform design decisions regarding size and seating arrangement for tabletop workspaces. For cases in which there is insufficient space, design alternatives are recommended to improve accessibility to artifacts to compensate for space limitations. These solutions aim to enhance the external cognition of users when space is insufficient to work with artifacts in problem-solving tasks
    corecore