2,792 research outputs found

    Stochastic mirror descent dynamics and their convergence in monotone variational inequalities

    Get PDF
    We examine a class of stochastic mirror descent dynamics in the context of monotone variational inequalities (including Nash equilibrium and saddle-point problems). The dynamics under study are formulated as a stochastic differential equation driven by a (single-valued) monotone operator and perturbed by a Brownian motion. The system's controllable parameters are two variable weight sequences that respectively pre- and post-multiply the driver of the process. By carefully tuning these parameters, we obtain global convergence in the ergodic sense, and we estimate the average rate of convergence of the process. We also establish a large deviations principle showing that individual trajectories exhibit exponential concentration around this average.Comment: 23 pages; updated proofs in Section 3 and Section

    Hessian barrier algorithms for linearly constrained optimization problems

    Get PDF
    In this paper, we propose an interior-point method for linearly constrained optimization problems (possibly nonconvex). The method - which we call the Hessian barrier algorithm (HBA) - combines a forward Euler discretization of Hessian Riemannian gradient flows with an Armijo backtracking step-size policy. In this way, HBA can be seen as an alternative to mirror descent (MD), and contains as special cases the affine scaling algorithm, regularized Newton processes, and several other iterative solution methods. Our main result is that, modulo a non-degeneracy condition, the algorithm converges to the problem's set of critical points; hence, in the convex case, the algorithm converges globally to the problem's minimum set. In the case of linearly constrained quadratic programs (not necessarily convex), we also show that the method's convergence rate is O(1/kρ)\mathcal{O}(1/k^\rho) for some ρ(0,1]\rho\in(0,1] that depends only on the choice of kernel function (i.e., not on the problem's primitives). These theoretical results are validated by numerical experiments in standard non-convex test functions and large-scale traffic assignment problems.Comment: 27 pages, 6 figure

    Entropic Wasserstein Gradient Flows

    Full text link
    This article details a novel numerical scheme to approximate gradient flows for optimal transport (i.e. Wasserstein) metrics. These flows have proved useful to tackle theoretically and numerically non-linear diffusion equations that model for instance porous media or crowd evolutions. These gradient flows define a suitable notion of weak solutions for these evolutions and they can be approximated in a stable way using discrete flows. These discrete flows are implicit Euler time stepping according to the Wasserstein metric. A bottleneck of these approaches is the high computational load induced by the resolution of each step. Indeed, this corresponds to the resolution of a convex optimization problem involving a Wasserstein distance to the previous iterate. Following several recent works on the approximation of Wasserstein distances, we consider a discrete flow induced by an entropic regularization of the transportation coupling. This entropic regularization allows one to trade the initial Wasserstein fidelity term for a Kulback-Leibler divergence, which is easier to deal with numerically. We show how KL proximal schemes, and in particular Dykstra's algorithm, can be used to compute each step of the regularized flow. The resulting algorithm is both fast, parallelizable and versatile, because it only requires multiplications by a Gibbs kernel. On Euclidean domains discretized on an uniform grid, this corresponds to a linear filtering (for instance a Gaussian filtering when cc is the squared Euclidean distance) which can be computed in nearly linear time. On more general domains, such as (possibly non-convex) shapes or on manifolds discretized by a triangular mesh, following a recently proposed numerical scheme for optimal transport, this Gibbs kernel multiplication is approximated by a short-time heat diffusion

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    Reduced order output feedback control design for PDE systems using proper orthogonal decomposition and nonlinear semidefinite programming

    Get PDF
    AbstractThe design of an optimal (output feedback) reduced order control (ROC) law for a dynamic control system is an important example of a difficult and in general non-convex (nonlinear) optimal control problem. In this paper we present a novel numerical strategy to the solution of the ROC design problem if the control system is described by partial differential equations (PDE). The discretization of the ROC problem with PDE constraints leads to a large scale (non-convex) nonlinear semidefinite program (NSDP). For reducing the size of the high dimensional control system, first, we apply a proper orthogonal decomposition (POD) method to the discretized PDE. The POD approach leads to a low dimensional model of the control system. Thereafter, we solve the corresponding small-sized NSDP by a fully iterative interior point constraint trust region (IPCTR) algorithm. IPCTR is designed to take advantage of the special structure of the NSDP. Finally, the solution is a ROC for the low dimensional approximation of the control system. In our numerical examples we demonstrate that the reduced order controller computed from the small scaled problem can be used to control the large scale approximation of the PDE system

    Generalized self-concordant Hessian-barrier algorithms

    Get PDF
    Many problems in statistical learning, imaging, and computer vision involve the optimization of a non-convex objective function with singularities at the boundary of the feasible set. For such challenging instances, we develop a new interior-point technique building on the Hessian-barrier algorithm recently introduced in Bomze, Mertikopoulos, Schachinger and Staudigl, [SIAM J. Opt. 2019 29(3), pp. 2100-2127], where the Riemannian metric is induced by a generalized selfconcordant function. This class of functions is sufficiently general to include most of the commonly used barrier functions in the literature of interior point methods. We prove global convergence to an approximate stationary point of the method, and in cases where the feasible set admits an easily computable self-concordant barrier, we verify worst-case optimal iteration complexity of the method. Applications in non-convex statistical estimation and Lp-minimization are discussed to given the efficiency of the method

    Generalized Self-concordant Hessian-barrier algorithms

    Get PDF
    Many problems in statistical learning, imaging, and computer vision involve the optimization of a non-convex objective function with singularities at the boundary of the feasible set. For such challenging instances, we develop a new interior-point technique building on the Hessian-barrier algorithm recently introduced in Bomze, Mertikopoulos, Schachinger and Staudigl, [SIAM J. Opt. 2019 29(3), pp. 2100-2127], where the Riemannian metric is induced by a generalized self-concordant function. This class of functions is sufficiently general to include most of the commonly used barrier functions in the literature of interior point methods. We prove global convergence to an approximate stationary point of the method, and in cases where the feasible set admits an easily computable self-concordant barrier, we verify worst-case optimal iteration complexity of the method. Applications in non-convex statistical estimation and LpL^{p}-minimization are discussed to given the efficiency of the method
    corecore