57,580 research outputs found

    On the Displacement for Covering a dβˆ’d-dimensional Cube with Randomly Placed Sensors

    Full text link
    Consider nn sensors placed randomly and independently with the uniform distribution in a dβˆ’d-dimensional unit cube (dβ‰₯2d\ge 2). The sensors have identical sensing range equal to rr, for some r>0r >0. We are interested in moving the sensors from their initial positions to new positions so as to ensure that the dβˆ’d-dimensional unit cube is completely covered, i.e., every point in the dβˆ’d-dimensional cube is within the range of a sensor. If the ii-th sensor is displaced a distance did_i, what is a displacement of minimum cost? As cost measure for the displacement of the team of sensors we consider the aa-total movement defined as the sum Ma:=βˆ‘i=1ndiaM_a:= \sum_{i=1}^n d_i^a, for some constant a>0a>0. We assume that rr and nn are chosen so as to allow full coverage of the dβˆ’d-dimensional unit cube and a>0a > 0. The main contribution of the paper is to show the existence of a tradeoff between the dβˆ’d-dimensional cube, sensing radius and aa-total movement. The main results can be summarized as follows for the case of the dβˆ’d-dimensional cube. If the dβˆ’d-dimensional cube sensing radius is 12n1/d\frac{1}{2n^{1/d}} and n=mdn=m^d, for some m∈Nm\in N, then we present an algorithm that uses O(n1βˆ’a2d)O\left(n^{1-\frac{a}{2d}}\right) total expected movement (see Algorithm 2 and Theorem 5). If the dβˆ’d-dimensional cube sensing radius is greater than 33/d(31/dβˆ’1)(31/dβˆ’1)12n1/d\frac{3^{3/d}}{(3^{1/d}-1)(3^{1/d}-1)}\frac{1}{2n^{1/d}} and nn is a natural number then the total expected movement is O(n1βˆ’a2d(ln⁑nn)a2d)O\left(n^{1-\frac{a}{2d}}\left(\frac{\ln n}{n}\right)^{\frac{a}{2d}}\right) (see Algorithm 3 and Theorem 7). In addition, we simulate Algorithm 2 and discuss the results of our simulations

    Epitaxial Growth Kinetics with Interacting Coherent Islands

    Full text link
    The Stranski-Krastanov growth kinetics of undislocated (coherent) 3-dimensional islands is studied with a self-consistent mean field rate theory that takes account of elastic interactions between the islands. The latter are presumed to facilitate the detachment of atoms from the islands with a consequent decrease in their average size. Semi-quantitative agreement with experiment is found for the time evolution of the total island density and the mean island size. When combined with scaling ideas, these results provide a natural way to understand the often-observed initial increase and subsequent decrease in the width of the coherent island size distribution.Comment: 4 pages, 4 figure

    The Concept of Two Mobilities in Homoepitaxial Growth

    Get PDF
    A general kinetic concept is introduced which can be used to control growth modes in homoepitaxy. Its basic idea is that during growth of a layer, the characteristics length scale associated with nucleation is deliberately varied. The power of this concept lies in the fact that it can be realized experimentally in a variety of ways and is not restricted to special systems. It helps to understand various effects reported in the literature and may serve as a guideline for future methods of growth manipulation

    Scaling of Heteroepitaxial Island Sizes

    Full text link
    Monte Carlo simulations of an atomistic solid-on-solid model are used to study the effect of lattice misfit on the distribution of two-dimensional islands sizes as a function of coverage Θ\Theta in the submonolayer aggregation regime of epitaxial growth. Misfit promotes the detachment of atoms from the perimeter of large pseudomorphic islands and thus favors their dissolution into smaller islands that relieve strain more efficiently. The number density of islands composed of ss atoms exhibits scaling in the form \mbox{Ns(Θ)∼Θ/⟨s⟩2 g(s/⟨s⟩N_s(\Theta) \sim \Theta / \langle s \rangle^2 \, g(s/\langle s \rangle)} where ⟨s⟩\langle s \rangle is the average island size. Unlike the case of homoepitaxy, a rate equation theory based on this observation leads to qualitatively different behavior than observed in the simulations.Comment: 10 pages, LaTeX 2.09, IC-DDV-94-00
    • …
    corecore