91 research outputs found

    A Comprehensive Approach to WSN-Based ITS Applications: A Survey

    Get PDF
    In order to perform sensing tasks, most current Intelligent Transportation Systems (ITS) rely on expensive sensors, which offer only limited functionality. A more recent trend consists of using Wireless Sensor Networks (WSN) for such purpose, which reduces the required investment and enables the development of new collaborative and intelligent applications that further contribute to improve both driving safety and traffic efficiency. This paper surveys the application of WSNs to such ITS scenarios, tackling the main issues that may arise when developing these systems. The paper is divided into sections which address different matters including vehicle detection and classification as well as the selection of appropriate communication protocols, network architecture, topology and some important design parameters. In addition, in line with the multiplicity of different technologies that take part in ITS, it does not consider WSNs just as stand-alone systems, but also as key components of heterogeneous systems cooperating along with other technologies employed in vehicular scenarios

    QoS-Aware Energy Management and Node Scheduling Schemes for Sensor Network-Based Surveillance Applications

    Full text link
    Recent advances in wireless technologies have led to an increased deployment of Wireless Sensor Networks (WSNs) for a plethora of diverse surveillance applications such as health, military, and environmental. However, sensor nodes in WSNs usually suffer from short device lifetime due to severe energy constraints and therefore, cannot guarantee to meet the Quality of Service (QoS) needs of various applications. This is proving to be a major hindrance to the widespread adoption of WSNs for such applications. Therefore, to extend the lifetime of WSNs, it is critical to optimize the energy usage in sensor nodes that are often deployed in remote and hostile terrains. To this effect, several energy management schemes have been proposed recently. Node scheduling is one such strategy that can prolong the lifetime of WSNs and also helps to balance the workload among the sensor nodes. In this article, we discuss on the energy management techniques of WSN with a particular emphasis on node scheduling and propose an energy management life-cycle model and an energy conservation pyramid to extend the network lifetime of WSNs. We have provided a detailed classification and evaluation of various node scheduling schemes in terms of their ability to fulfill essential QoS requirements, namely coverage, connectivity, fault tolerance, and security. We considered essential design issues such as network type, deployment pattern, sensing model in the classification process. Furthermore, we have discussed the operational characteristics of schemes with their related merits and demerits. We have compared the efficacy of a few well known graph-based scheduling schemes with suitable performance analysis graph. Finally, we study challenges in designing and implementing node scheduling schemes from a QoS perspective and outline open research problems

    Object tracking sensor networks in smart cities: Taxonomy, architecture, applications, research challenges and future directions

    Get PDF
    The development of pervasive communication devices and the emergence of the Internet of Things (IoT) have acted as an essential part in the feasibility of smart city initiatives. Wireless sensor network (WSN) as a key enabling technology in IoT offers the potential for cities to get smatter. WSNs gained tremendous attention during the recent years because of their rising number of applications that enables remote monitoring and tracking in smart cities. One of the most exciting applications of WSNs in smart cities is detection, monitoring, and tracking which is referred to as object tracking sensor networks (OTSN). The adaptation of OTSN into urban cities brought new exciting challenges for reaching the goal of future smart cities. Such challenges focus primarily on problems related to active monitoring and tracking in smart cities. In this paper, we present the essential characteristics of OTSN, monitoring and tracking application used with the content of smart city. Moreover, we discussed the taxonomy of OTSN along with analysis and comparison. Furthermore, research challenges are investigated concerning energy reservation, object detection, object speed, accuracy in tracking, sensor node collaboration, data aggregation and object recovery position estimation. This review can serve as a benchmark for researchers for future development of smart cities in the context of OTSN. Lastly, we provide future research direction

    Energy harvesting for marine based sensors

    Get PDF
    This work examines powering marine based sensors (MBSs) by harvesting energy from their local environment. MBSs intrinsically operate in remote locations, traditionally requiring expensive maintenance expeditions for battery replacement and data download. Nowadays, modern wireless communication allows real-time data access, but adds a significant energy drain, necessitating frequent battery replacement. Harvesting renewable energy to recharge the MBSs battery, introduces the possibility of autonomous MBS operation, reducing maintenance costs and increasing their applicability. The thesis seeks to answer if an unobtrusive energy harvesting device can be incorporated into the MBS deployment to generate 1 Watt of average power. Two candidate renewable energy resources are identified for investigation, ocean waves and the thermal gradient across the air/water interface. Wave energy conversion has drawn considerable research in recent years, due to the large consistent energy flux of ocean waves compared to other conventional energy sources such as solar or wind, but focussing on large scale systems permanently deployed at sites targeted for their favourable wave climates. Although a small amount of research exists on using wave energy for distributed power generation, the device sizes and power outputs of these systems are still one to two orders of magnitude larger than that targeted in this thesis. The present work aims for an unobtrusive device that is easily deployable/retrievable with a mass less than 50kg and which can function at any deployment location regardless of the local wave climate. Additionally, this research differs from previous work, by also seeking to minimise the wave induced pitch motion of the MBS buoy, which negatively affects the data transmission of the MBS due to tilting and misalignment of the RF antenna. Thermal energy harvesting has previously been investigated for terrestrial based sensors, utilising the temperature difference between the soil and ambient air. In this thesis, the temperature difference between the water and ambient air is utilised, to present the first investigation of this thermal energy harvesting concept in the marine environment. A prototype wave energy converter (WEC) was proposed, consisting of a heaving cylindrical buoy with an internal permanent magnet linear generator. A mathematical model of the prototype WEC is derived by coupling a hydrodynamic model for the motion of the buoy with a vibration energy harvester model for the generator. The wave energy resource is assessed, using established mathematical descriptions of ocean wave spectra and by analysing measured wave data from the coast of Queensland, resulting in characteristic wave spectra that are input to the mathematical model of the WEC. The parameters of the WEC system are optimised, to maximise the power output while minimising the pitch motion. A prototype thermal energy harvesting device is proposed, consisting of a thermoelectric device sandwiched between airside and waterside heat exchangers. A mathematical model is derived to assess the power output of the thermal energy harvester using different environmental datasets as input. A physical prototype is built and a number of experiments performed to assess its performance. The results indicate that the prototype WEC should target the high frequency tail of ocean wave spectra, diverging from traditional philosophy of larger scale WECs which target the peak frequency of the input wave spectrum. The analysis showed that the prototype WEC was unable to provide the required power output whilst remaining below 100kg and obeying a 40 degrees pitch angle constraint to ensure robust data transmission. However, a proposed modification to the WECs cylindrical geometry, to improve its hydrodynamic coupling to the input waves, was shown to enable the WEC to provide the required 1W output power whilst obeying the pitch constraints and having a mass below 50kg. The thermal energy harvester results reveal that the thermal gradient across the air/water interface alone is not a suitable energy resource, requiring a device with a cross-sectional area in excess of 100m² to power a MBS. However, including a solar thermal energy collector to increase the airside temperature, greatly improves the performance and enables a thermal energy harvester with a cross-sectional area on the order of 1m² to provide 1W of output power. The findings in this thesis suggest that a well hydrodynamically designed buoy can provide two major benefits for a MBS deployment: enabling efficient wave energy absorption by the MBS buoy, and minimising the wave induced pitch motion which negatively affects the data transmission
    • …
    corecore