1,372 research outputs found

    Development of a GIS-based method for sensor network deployment and coverage optimization

    Get PDF
    Au cours des dernières années, les réseaux de capteurs ont été de plus en plus utilisés dans différents contextes d’application allant de la surveillance de l’environnement au suivi des objets en mouvement, au développement des villes intelligentes et aux systèmes de transport intelligent, etc. Un réseau de capteurs est généralement constitué de nombreux dispositifs sans fil déployés dans une région d'intérêt. Une question fondamentale dans un réseau de capteurs est l'optimisation de sa couverture spatiale. La complexité de l'environnement de détection avec la présence de divers obstacles empêche la couverture optimale de plusieurs zones. Par conséquent, la position du capteur affecte la façon dont une région est couverte ainsi que le coût de construction du réseau. Pour un déploiement efficace d'un réseau de capteurs, plusieurs algorithmes d'optimisation ont été développés et appliqués au cours des dernières années. La plupart de ces algorithmes reposent souvent sur des modèles de capteurs et de réseaux simplifiés. En outre, ils ne considèrent pas certaines informations spatiales de l'environnement comme les modèles numériques de terrain, les infrastructures construites humaines et la présence de divers obstacles dans le processus d'optimisation. L'objectif global de cette thèse est d'améliorer les processus de déploiement des capteurs en intégrant des informations et des connaissances géospatiales dans les algorithmes d'optimisation. Pour ce faire, trois objectifs spécifiques sont définis. Tout d'abord, un cadre conceptuel est développé pour l'intégration de l'information contextuelle dans les processus de déploiement des réseaux de capteurs. Ensuite, sur la base du cadre proposé, un algorithme d'optimisation sensible au contexte local est développé. L'approche élargie est un algorithme local générique pour le déploiement du capteur qui a la capacité de prendre en considération de l'information spatiale, temporelle et thématique dans différents contextes d'applications. Ensuite, l'analyse de l'évaluation de la précision et de la propagation d'erreurs est effectuée afin de déterminer l'impact de l'exactitude des informations contextuelles sur la méthode d'optimisation du réseau de capteurs proposée. Dans cette thèse, l'information contextuelle a été intégrée aux méthodes d'optimisation locales pour le déploiement de réseaux de capteurs. L'algorithme développé est basé sur le diagramme de Voronoï pour la modélisation et la représentation de la structure géométrique des réseaux de capteurs. Dans l'approche proposée, les capteurs change leur emplacement en fonction des informations contextuelles locales (l'environnement physique, les informations de réseau et les caractéristiques des capteurs) visant à améliorer la couverture du réseau. La méthode proposée est implémentée dans MATLAB et est testée avec plusieurs jeux de données obtenus à partir des bases de données spatiales de la ville de Québec. Les résultats obtenus à partir de différentes études de cas montrent l'efficacité de notre approche.In recent years, sensor networks have been increasingly used for different applications ranging from environmental monitoring, tracking of moving objects, development of smart cities and smart transportation system, etc. A sensor network usually consists of numerous wireless devices deployed in a region of interest. A fundamental issue in a sensor network is the optimization of its spatial coverage. The complexity of the sensing environment with the presence of diverse obstacles results in several uncovered areas. Consequently, sensor placement affects how well a region is covered by sensors as well as the cost for constructing the network. For efficient deployment of a sensor network, several optimization algorithms are developed and applied in recent years. Most of these algorithms often rely on oversimplified sensor and network models. In addition, they do not consider spatial environmental information such as terrain models, human built infrastructures, and the presence of diverse obstacles in the optimization process. The global objective of this thesis is to improve sensor deployment processes by integrating geospatial information and knowledge in optimization algorithms. To achieve this objective three specific objectives are defined. First, a conceptual framework is developed for the integration of contextual information in sensor network deployment processes. Then, a local context-aware optimization algorithm is developed based on the proposed framework. The extended approach is a generic local algorithm for sensor deployment, which accepts spatial, temporal, and thematic contextual information in different situations. Next, an accuracy assessment and error propagation analysis is conducted to determine the impact of the accuracy of contextual information on the proposed sensor network optimization method. In this thesis, the contextual information has been integrated in to the local optimization methods for sensor network deployment. The extended algorithm is developed based on point Voronoi diagram in order to represent geometrical structure of sensor networks. In the proposed approach sensors change their location based on local contextual information (physical environment, network information and sensor characteristics) aiming to enhance the network coverage. The proposed method is implemented in MATLAB and tested with several data sets obtained from Quebec City spatial database. Obtained results from different case studies show the effectiveness of our approach

    Personal History and List of Main Publications of Professor

    Get PDF
    Other信州大学経済学論集 67: 59-64(2016)othe

    Mission-Critical Communications from LMR to 5G: a Technology Assessment approach for Smart City scenarios

    Get PDF
    Radiocommunication networks are one of the main support tools of agencies that carry out actions in Public Protection & Disaster Relief (PPDR), and it is necessary to update these communications technologies from narrowband to broadband and integrated to information technologies to have an effective action before society. Understanding that this problem includes, besides the technical aspects, issues related to the social context to which these systems are inserted, this study aims to construct scenarios, using several sources of information, that helps the managers of the PPDR agencies in the technological decisionmaking process of the Digital Transformation of Mission-Critical Communication considering Smart City scenarios, guided by the methods and approaches of Technological Assessment (TA).As redes de radiocomunicações são uma das principais ferramentas de apoio dos órgãos que realizam ações de Proteção Pública e Socorro em desastres, sendo necessário atualizar essas tecnologias de comunicação de banda estreita para banda larga, e integra- las às tecnologias de informação, para se ter uma atuação efetiva perante a sociedade . Entendendo que esse problema inclui, além dos aspectos técnicos, questões relacionadas ao contexto social ao qual esses sistemas estão inseridos, este estudo tem por objetivo a construção de cenários, utilizando diversas fontes de informação que auxiliem os gestores destas agências na tomada de decisão tecnológica que envolve a transformação digital da Comunicação de Missão Crítica considerando cenários de Cidades Inteligentes, guiado pelos métodos e abordagens de Avaliação Tecnológica (TA)

    Auto ID-Bridging the physical and the digital on construction projects

    Get PDF
    This book looks at how auto-ID has evolved and how it can be used in the construction industry and across projects from the perspective of all the stakeholders, from owners to design consultants, contractors and the supply chain. It could help to improve efficiency, reduce costs, ensure quality, protect the environment, and enhance safety

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Federated Sensor Network architectural design for the Internet of Things (IoT)

    Get PDF
    An information technology that can combine the physical world and virtual world is desired. The Internet of Things (IoT) is a concept system that uses Radio Frequency Identification (RFID), WSN and barcode scanners to sense and to detect physical objects and events. This information is shared with people on the Internet. With the announcement of the Smarter Planet concept by IBM, the problem of how to share this data was raised. However, the original design of WSN aims to provide environment monitoring and control within a small scale local network. It cannot meet the demands of the IoT because there is a lack of multi-connection functionality with other WSNs and upper level applications. As various standards of WSNs provide information for different purposes, a hybrid system that gives a complete answer by combining all of them could be promising for future IoT applications. This thesis is on the subject of `Federated Sensor Network' design and architectural development for the Internet of Things. A Federated Sensor Network (FSN) is a system that integrates WSNs and the Internet. Currently, methods of integrating WSNs and the Internet can follow one of three main directions: a Front-End Proxy solution, a Gateway solution or a TCP/IP Overlay solution. Architectures based on the ideas from all three directions are presented in this thesis; this forms a comprehensive body of research on possible Federated Sensor Network architecture designs. In addition, a fully compatible technology for the sensor network application, namely the Sensor Model Language (SensorML), has been reviewed and embedded into our FSN systems. The IoT as a new concept is also comprehensively described and the major technical issues discussed. Finally, a case study of the IoT in logistic management for emergency response is given. Proposed FSN architectures based on the Gateway solution are demonstrated through hardware implementation and lab tests. A demonstration of the 6LoWPAN enabled federated sensor network based on the TCP/IP Overlay solution presents a good result for the iNET localization and tracking project. All the tests of the designs have verified feasibility and achieve the target of the IoT concept

    Mobile sensor networks for environmental monitoring

    Get PDF
    Vulnerability to natural disasters and the human pressure on natural resources have increased the need for environmental monitoring. Proper decisions, based on real-time information gathered from the environment, are critical to protecting human lives and natural resources. To this end, mobile sensor networks, such as wireless sensor networks, are promising sensing systems for flexible and autonomous gathering of such information. Mobile sensor networks consist of geographically deployed sensors very close to a phenomenon of interest. The sensors are autonomous, self-configured, small, lightweight and low powered, and they become mobile when they are attached to mobile objects such as robots, people or bikes. Research on mobile sensor networks has focused primarily on using sensor mobility to reduce the main sensor network limitations in terms of network topology, connectivity and energy conservation. However, how sensor mobility could improve environmental monitoring still remains largely unexplored. Addressing this requires the consideration of two main mobility aspects: sampling and mobility constraints. Sampling is about where mobile sensors should be moved, while mobility constraints are about how such movements should be handled, considering the context in which the monitoring is carried out. This thesis explores approaches for sensor mobility within a wireless sensor network for use in environmental monitoring. To achieve this goal, four sub-objectives were defined: Explore the use of metadata to describe the dynamic status of sensor networks. Develop a mobility constraint model to infer mobile sensor behaviour. Develop a method to adapt spatial sampling using mobile, constrained sensors. Extend the developed adaptive sampling method to monitoring highly dynamic environmental phenomena. Chapter 2 explores the use of metadata to describe the dynamic status of sensor networks. A context model was proposed to describe the general situation in which a sensor network is monitoring. The model consists of four types of contexts: sensor, network, sensing and organisation, where each of the contexts describes the sensor network from a different perspective. Metadata, which are descriptors of observed data, sensor configurations and functionalities, are used as parameters to describe what is happening in the different contexts. The results reveal that metadata are suitable for describing sensor network status within different contexts and reporting the status back to other components, systems or users. Chapter 3 develops a model which describes mobility constraints for inferring mobile sensor behaviour. The proposed mobility constraint model consists of three components: first, the context typology proposed in Chapter 2 to describe mobility constraints within the different contexts; second, a context graph, modelled as a Bayesian network, to encode dependencies of mobility constraints within the same or different contexts, as well as among mobility constraints and sensor behaviour; and third, contextual rules to encode how dependent mobility constraints are expected to constrain sensor behaviour. Metadata values for the monitored phenomenon and sensor properties are used to feed the context graph. They are propagated through the graph structure, and the contextual rules are used to infer the most suitable behaviour. The model was used to simulate the behaviour of a mobile sensor network to obtain a suitable spatial coverage in low and high fire risk scenarios. It was shown that the mobility constraint model successfully inferred behaviour, such as sleeping sensors, moving sensors and deploying more sensors to enhance spatial coverage. Chapter 4 develops a spatial sampling strategy for use with mobile, constrained sensors according to the expected value of information (EVoI) and mobility constraints. EVoI allows decisions to be made about the location to observe. It minimises the expected costs of wrong predictions about a phenomenon using a spatially aggregated EVoI criterion. Mobility constraints allow decisions to be made about which sensor to move. A cost-distance criterion is used to minimise unwanted effects of sensor mobility on the sensor network itself, such as energy depletion. The method was assessed by comparing it with a random selection of sample locations combined with sensor selection based on a minimum Euclidian distance criterion. The results demonstrate that EVoI enables selection of the most informative locations, while mobility constraints provide the needed context for sensor selection. Chapter 5 extends the method developed in Chapter 4 for the case of highly dynamic phenomena. It develops a method for deciding when and where to sample a dynamic phenomenon using mobile sensors. The optimisation criterion is to maximise the EVoI from a new sensor deployment at each time step. The method was demonstrated in a scenario in which a simulated fire in a chemical factory released polluted smoke into the open air. The plume varied in space and time because of variations in atmospheric conditions and could be only partially predicted by a deterministic dispersion model. In-situ observations acquired by mobile sensors were considered to improve predictions. A comparison with random sensor movements and the previous sensor deployment without performing sensor movements shows that the optimised sensor mobility successfully reduced risk caused by poor model predictions. Chapter 6 synthesises the main findings and presents my reflections on the implications of such findings. Mobile sensors for environmental monitoring are relevant to improving monitoring by selecting sampling locations that deliver the information that most improves the quality of decisions for protecting human lives and natural resources. Mobility constraints are relevant to managing sensor mobility within sampling strategies. The traditional consideration of mobility constraints within the field of computer sciences mainly leads to sensor self-protection rather than to the protection of human beings and natural resources. By contrast, when used for environmental monitoring, mobile sensors should above all improve monitoring performance, even thought this might produce negative effects on coverage, connectivity or energy consumption. Thus, mobility constraints are useful for reducing such negative effects without constraining the sampling strategy. Although sensor networks are now a mature technology, they are not yet widely used by surveyors and environmental scientists. The operational use of sensor networks in geo-information and environmental sciences therefore needs to be further stimulated. Although this thesis focuses on wireless sensor network, other types of informal sensor networks could be also relevant for environmental monitoring, such as smart phones, volunteer citizens and sensor web. Finally, the following recommendations are given for further research: extend the sampling strategy for dynamic phenomena to take account of mobility constraints; develop sampling strategies that take a decentralised approach; focus on mobility constraints related to connectivity and data transmission; elicit expert knowledge to reveal preferences for sensor mobility under mobility constraints within different types of environmental applications; and validate the proposed strategies in operational implementations. </p

    RTD INFO November 2002 Special Edition

    Get PDF

    GigaHertz Symposium 2010

    Get PDF

    Unmanned Vehicle Systems & Operations on Air, Sea, Land

    Get PDF
    Unmanned Vehicle Systems & Operations On Air, Sea, Land is our fourth textbook in a series covering the world of Unmanned Aircraft Systems (UAS) and Counter Unmanned Aircraft Systems (CUAS). (Nichols R. K., 2018) (Nichols R. K., et al., 2019) (Nichols R. , et al., 2020)The authors have expanded their purview beyond UAS / CUAS systems. Our title shows our concern for growth and unique cyber security unmanned vehicle technology and operations for unmanned vehicles in all theaters: Air, Sea and Land – especially maritime cybersecurity and China proliferation issues. Topics include: Information Advances, Remote ID, and Extreme Persistence ISR; Unmanned Aerial Vehicles & How They Can Augment Mesonet Weather Tower Data Collection; Tour de Drones for the Discerning Palate; Underwater Autonomous Navigation & other UUV Advances; Autonomous Maritime Asymmetric Systems; UUV Integrated Autonomous Missions & Drone Management; Principles of Naval Architecture Applied to UUV’s; Unmanned Logistics Operating Safely and Efficiently Across Multiple Domains; Chinese Advances in Stealth UAV Penetration Path Planning in Combat Environment; UAS, the Fourth Amendment and Privacy; UV & Disinformation / Misinformation Channels; Chinese UAS Proliferation along New Silk Road Sea / Land Routes; Automaton, AI, Law, Ethics, Crossing the Machine – Human Barrier and Maritime Cybersecurity.Unmanned Vehicle Systems are an integral part of the US national critical infrastructure The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. Unmanned Vehicle (UV) Systems & Operations On Air, Sea, Land discusses state-of-the-art technology / issues facing U.S. UV system researchers / designers / manufacturers / testers. We trust our newest look at Unmanned Vehicles in Air, Sea, and Land will enrich our students and readers understanding of the purview of this wonderful technology we call UV.https://newprairiepress.org/ebooks/1035/thumbnail.jp
    • …
    corecore