4,111 research outputs found

    A Progressive Approach to Enhance Lifetime for Barrier Coverage in Wireless Sensor Network

    Get PDF
    Wireless sensor networks have their applications deployed in all the fields of area of research beyond the visualization of smart sensors. The sensors installed may experience many coverage related faults e.g., Barrier coverage problem. This problem affects the random deployment in sensor network to conserve energy and therefore has to be rectified, confined and approved. The protocol CSP andVSP defined extends the advantageoreducingtheenergyconsumption and increases the lifetime of sensor nodes with the intrusion detection model over heterogeneous deployment. Inspite of low connectivity and multihop signal paths, the protocols is entirely scalabl e in terms of computational control and communication bandwidth. Two diverse cases are employed between th e nodes with the protocols: position to position connectivity and load balancing. The former produces better results with a linear increase in network lifetime whereas through latter achieves 40 percent of energy utilization. Simul ation results are provide d to display the efficiency of the protocol designed

    A sub-mW IoT-endnode for always-on visual monitoring and smart triggering

    Full text link
    This work presents a fully-programmable Internet of Things (IoT) visual sensing node that targets sub-mW power consumption in always-on monitoring scenarios. The system features a spatial-contrast 128x64128\mathrm{x}64 binary pixel imager with focal-plane processing. The sensor, when working at its lowest power mode (10μW10\mu W at 10 fps), provides as output the number of changed pixels. Based on this information, a dedicated camera interface, implemented on a low-power FPGA, wakes up an ultra-low-power parallel processing unit to extract context-aware visual information. We evaluate the smart sensor on three always-on visual triggering application scenarios. Triggering accuracy comparable to RGB image sensors is achieved at nominal lighting conditions, while consuming an average power between 193μW193\mu W and 277μW277\mu W, depending on context activity. The digital sub-system is extremely flexible, thanks to a fully-programmable digital signal processing engine, but still achieves 19x lower power consumption compared to MCU-based cameras with significantly lower on-board computing capabilities.Comment: 11 pages, 9 figures, submitteted to IEEE IoT Journa

    Smart streetlights: a feasibility study

    Get PDF
    The world's cities are growing. The effects of population growth and urbanisation mean that more people are living in cities than ever before, a trend set to continue. This urbanisation poses problems for the future. With a growing population comes more strain on local resources, increased traffic and congestion, and environmental decline, including more pollution, loss of green spaces, and the formation of urban heat islands. Thankfully, many of these stressors can be alleviated with better management and procedures, particularly in the context of road infrastructure. For example, with better traffic data, signalling can be smoothed to reduce congestion, parking can be made easier, and streetlights can be dimmed in real time to match real-world road usage. However, obtaining this information on a citywide scale is prohibitively expensive due to the high costs of labour and materials associated with installing sensor hardware. This study investigated the viability of a streetlight-integrated sensor system to affordably obtain traffic and environmental information. This investigation was conducted in two stages: 1) the development of a hardware prototype, and 2) evaluation of an evolved prototype system. In Stage 1 of the study, the development of the prototype sensor system was conducted over three design iterations. These iterations involved, in iteration 1, the live deployment of the prototype system in an urban setting to select and evaluate sensors for environmental monitoring, and in iterations 2 and 3, deployments on roads with live and controlled traffic to develop and test sensors for remote traffic detection. In the final iteration, which involved controlled passes of over 600 vehicle, 600 pedestrian, and 400 cyclist passes, the developed system that comprised passive-infrared motion detectors, lidar, and thermal sensors, could detect and count traffic from a streetlight-integrated configuration with 99%, 84%, and 70% accuracy, respectively. With the finalised sensor system design, Stage 1 showed that traffic and environmental sensing from a streetlight-integrated configuration was feasible and effective using on-board processing with commercially available and inexpensive components. In Stage 2, financial and social assessments of the developed sensor system were conducted to evaluate its viability and value in a community. An evaluation tool for simulating streetlight installations was created to measure the effects of implementing the smart streetlight system. The evaluation showed that the on-demand traffic-adaptive dimming enabled by the smart streetlight system was able to reduce the electrical and maintenance costs of lighting installations. As a result, a 'smart' LED streetlight system was shown to outperform conventional always-on streetlight configurations in terms of financial value within a period of five to 12 years, depending on the installation's local traffic characteristics. A survey regarding the public acceptance of smart streetlight systems was also conducted and assessed the factors that influenced support of its applications. In particular, the Australia-wide survey investigated applications around road traffic improvement, streetlight dimming, and walkability, and quantified participants' support through willingness-to-pay assessments to enable each application. Community support of smart road applications was generally found to be positive and welcomed, especially in areas with a high dependence on personal road transport, and from participants adversely affected by spill light in their homes. Overall, the findings of this study indicate that our cities, and roads in particular, can and should be made smarter. The technology currently exists and is becoming more affordable to allow communities of all sizes to implement smart streetlight systems for the betterment of city services, resource management, and civilian health and wellbeing. The sooner that these technologies are embraced, the sooner they can be adapted to the specific needs of the community and environment for a more sustainable and innovative future

    A Progressive Approach to Enhance Lifetime for Barrier Coverage in Wireless Sensor Network

    Get PDF
    ABSTRACT: Wireless sensor networks have their applications deployed in all the fields of area of research beyond the visualization of smart sensors. The sensors installed may experience many coverage related faults e.g., Barrier coverage problem. This problem affects the random deployment in sensor network to conserve energy and therefore has to be rectified, confined and approved. The protocol CSP and VSP defined extends the advantage of reducing the energy consumption and increases the lifetime of sensor nodes with the intrusion detection model over heterogeneous deployment. Inspite of low connectivity and multihop signal paths, the protocols is entirely scalable in terms of computational control and communication bandwidth. Two diverse cases are employed between the nodes with the protocols: position to position connectivity and load balancing. The former produces better results with a linear increase in network lifetime whereas through latter achieves 40 percent of energy utilization. Simulation results are provided to display the efficiency of the protocol designed

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Emerging technologies for learning (volume 2)

    Get PDF

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    A Target Coverage Scheduling Scheme Based on Genetic Algorithms in Directional Sensor Networks

    Get PDF
    As a promising tool for monitoring the physical world, directional sensor networks (DSNs) consisting of a large number of directional sensors are attracting increasing attention. As directional sensors in DSNs have limited battery power and restricted angles of sensing range, maximizing the network lifetime while monitoring all the targets in a given area remains a challenge. A major technique to conserve the energy of directional sensors is to use a node wake-up scheduling protocol by which some sensors remain active to provide sensing services, while the others are inactive to conserve their energy. In this paper, we first address a Maximum Set Covers for DSNs (MSCD) problem, which is known to be NP-complete, and present a greedy algorithm-based target coverage scheduling scheme that can solve this problem by heuristics. This scheme is used as a baseline for comparison. We then propose a target coverage scheduling scheme based on a genetic algorithm that can find the optimal cover sets to extend the network lifetime while monitoring all targets by the evolutionary global search technique. To verify and evaluate these schemes, we conducted simulations and showed that the schemes can contribute to extending the network lifetime. Simulation results indicated that the genetic algorithm-based scheduling scheme had better performance than the greedy algorithm-based scheme in terms of maximizing network lifetime
    corecore