866 research outputs found

    Cloud/fog computing resource management and pricing for blockchain networks

    Full text link
    The mining process in blockchain requires solving a proof-of-work puzzle, which is resource expensive to implement in mobile devices due to the high computing power and energy needed. In this paper, we, for the first time, consider edge computing as an enabler for mobile blockchain. In particular, we study edge computing resource management and pricing to support mobile blockchain applications in which the mining process of miners can be offloaded to an edge computing service provider. We formulate a two-stage Stackelberg game to jointly maximize the profit of the edge computing service provider and the individual utilities of the miners. In the first stage, the service provider sets the price of edge computing nodes. In the second stage, the miners decide on the service demand to purchase based on the observed prices. We apply the backward induction to analyze the sub-game perfect equilibrium in each stage for both uniform and discriminatory pricing schemes. For the uniform pricing where the same price is applied to all miners, the existence and uniqueness of Stackelberg equilibrium are validated by identifying the best response strategies of the miners. For the discriminatory pricing where the different prices are applied to different miners, the Stackelberg equilibrium is proved to exist and be unique by capitalizing on the Variational Inequality theory. Further, the real experimental results are employed to justify our proposed model.Comment: 16 pages, double-column version, accepted by IEEE Internet of Things Journa

    A survey on intelligent computation offloading and pricing strategy in UAV-Enabled MEC network: Challenges and research directions

    Get PDF
    The lack of resource constraints for edge servers makes it difficult to simultaneously perform a large number of Mobile Devices’ (MDs) requests. The Mobile Network Operator (MNO) must then select how to delegate MD queries to its Mobile Edge Computing (MEC) server in order to maximize the overall benefit of admitted requests with varying latency needs. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligent (AI) can increase MNO performance because of their flexibility in deployment, high mobility of UAV, and efficiency of AI algorithms. There is a trade-off between the cost incurred by the MD and the profit received by the MNO. Intelligent computing offloading to UAV-enabled MEC, on the other hand, is a promising way to bridge the gap between MDs' limited processing resources, as well as the intelligent algorithms that are utilized for computation offloading in the UAV-MEC network and the high computing demands of upcoming applications. This study looks at some of the research on the benefits of computation offloading process in the UAV-MEC network, as well as the intelligent models that are utilized for computation offloading in the UAV-MEC network. In addition, this article examines several intelligent pricing techniques in different structures in the UAV-MEC network. Finally, this work highlights some important open research issues and future research directions of Artificial Intelligent (AI) in computation offloading and applying intelligent pricing strategies in the UAV-MEC network

    Contract design for traffic offloading and resource allocation in heterogeneous ultra-dense networks

    No full text
    In heterogeneous ultra-dense networks (HetUDNs), the software-defined wireless network (SDWN) separates resource management from geo-distributed resources belonging to different service providers. A centralized SDWN controller can manage the entire network globally. In this work, we focus on mobile traffic offloading and resource allocation in SDWN-based HetUDNs, constituted of different macro base stations (MBSs) and small-cell base stations (SBSs). We explore a scenario where SBSs’ capacities are available, but their offloading performance is unknown to the SDWN controller: this is the information asymmetric case. To address this asymmetry, incentivized traffic offloading contracts are designed to encourage each SBS to select the contract that achieves its own maximum utility. The characteristics of large numbers of SBSs in HetUDNs are aggregated in an analytical model, allowing us to select the SBS types that provide the off-loading, based on different contracts which offer rationality and incentive compatibility to different SBS types. This leads to a closed-form expression for selecting the SBS types involved, and we prove the monotonicity and incentive compatibility of the resulting contracts. The effectiveness and efficiency of the proposed contract-based traffic offloading mechanism, and its overall system performance, are validated using simulations
    • …
    corecore