128 research outputs found

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Development of an Entropy-Based Swarm Algorithm for Continuous Dynamic Constrained Optimization

    Get PDF
    Dynamic constrained optimization problems form a class of problems WHERE the objective function or the constraints can change over time. In static optimization, finding a global optimum is considered as the main goal. In dynamic optimization, the goal is not only to find an optimal solution, but also track its trajectory as closely as possible over time. Changes in the environment must be taken into account during the optimization process in such way that these problems are to be solved online. Many real-world problems can be formulated within this framework. This thesis proposes an entropy-based bare bones particle swarm for solving dynamic constrained optimization problems. The Shannons entropy is established as a phenotypic diversity index and the proposed algorithm uses the Shannons index of diversity to aggregate the global-best and local-best bare bones particle swarm variants. The proposed approach applies the idea of mixture of search directions by using the index of diversity as a factor to balance the influence of the global-best and local-best search directions. High diversity promotes the search guided by the global-best solution, with a normal distribution for exploitation. Low diversity promotes the search guided by the local-best solution, with a heavy-tailed distribution for exploration. A constraint-handling strategy is also proposed, which uses a ranking method with selection based on the technique for order of preference by similarity to ideal solution to obtain the best solution within a specific population of candidate solutions. Mechanisms to detect changes in the environment and to update particles' memories are also implemented into the proposed algorithm. All these strategies do not act independently. They operate related to each other to tackle problems such as: diversity loss due to convergence and outdated memories due to changes in the environment. The combined effect of these strategies provides an algorithm with ability to maintain a proper balance between exploration and exploitation at any stage of the search process without losing the tracking ability to search an optimal solution which is changing over time. An empirical study was carried out to evaluate the performance of the proposed approach. Experimental results show the suitability of the algorithm in terms of effectiveness to find good solutions for the benchmark problems investigated. Finally, an application is developed, WHERE the proposed algorithm is applied to solve the dynamic economic dispatch problem in power systems

    Scheduling optimization of prefabricated construction projects by genetic algorithm

    Get PDF
    Published: 15 June 2021Prefabricated buildings are the direction of the future development of the construction industry and have received widespread attention. The effective execution of prefabricated construction project scheduling should consider resource constraints and the supply arrangement of prefabricated components. However, the traditional construction resource-constrained project scheduling implementation method cannot simultaneously consider the characteristics of the linkage between component production and on-site assembly construction. It cannot also fully adapt to the scheduling implementation method of the prefabricated construction projects. It is difficult to work out a reasonable project schedule and resource allocation table. In order to determine the relevant schedule parameters that can reflect the actual construction situation of the prefabricated building and meet the scheduling requirements of the prefabricated project, this study proposes a prefabricated construction project scheduling model that considers project resource constraints and prefabricated component supply constraints. Additionally, it improves the design of traditional genetic algorithms (GAs). Research results of the experimental calculation and engineering application show that the proposed project scheduling optimization model and GA are effective and practical, which can help project managers in effectively formulating prefabricated construction project scheduling plans, reasonably allocating resources, reducing completion time, and improving project performance.Linlin Xie, Yajiao Chen and Ruidong Chan

    DIFFERENTIAL EVOLUTION-BASED METHODS FOR NUMERICAL OPTIMIZATION

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A dynamic scheduling model for construction enterprises

    Get PDF
    The vast majority of researches in the scheduling context focused on finding optimal or near-optimal predictive schedules under different scheduling problem characteristics. In the construction industry, predictive schedules are often produced in advance in order to direct construction operations and to support other planning activities. However, construction projects operate in dynamic environments subject to various real-time events, which usually disrupt the predictive optimal schedules, leading to schedules neither feasible nor optimal. Accordingly, the development of a dynamic scheduling model which can accommodate these real-time events would be of great importance for the successful implementation of construction scheduling systems. This research sought to develop a dynamic scheduling based solution which can be practically used for real time analysis and scheduling of construction projects, in addition to resources optimization for construction enterprises. The literature reviews for scheduling, dynamic scheduling, and optimization showed that despite the numerous researches presented and application performed in the dynamic scheduling field within manufacturing and other industries, there was dearth in dynamic scheduling literature in relation to the construction industry. The research followed two main interacting research paths, a path related to the development of the practical solution, and another path related to the core model development. The aim of the first path (or the proposed practical solution path) was to develop a computer-based dynamic scheduling framework which can be used in practical applications within the construction industry. Following the scheduling literature review, the construction project management community s opinions about the problem under study and the user requirements for the proposed solution were collected from 364 construction project management practitioners from 52 countries via a questionnaire survey and were used to form the basis for the functional specifications of a dynamic scheduling framework. The framework was in the form of a software tool fully integrated with current planning/scheduling practices with all core modelling which can support the integration of the dynamic scheduling processes to the current planning/scheduling process with minimal experience requirement from users about optimization. The second research path, or the dynamic scheduling core model development path, started with the development of a mathematical model based on the scheduling models in literature, with several extensions according to the practical considerations related to the construction industry, as investigated in the questionnaire survey. Scheduling problems are complex from operational research perspective; so, for the proposed solution to be functional in optimizing construction schedules, an optimization algorithm was developed to suit the problem's characteristics and to be used as part of the dynamic scheduling model's core. The developed algorithm contained few contributions to the scheduling context (such as schedule justification heuristics, and rectification to schedule generation schemes), as well as suggested modifications to the formulation and process of the adopted optimization technique (particle swarm optimization) leading to considerable improvement to this techniques outputs with respect to schedules quality. After the completion of the model development path, the first research path was concluded by combining the gathered solution's functional specifications and the developed dynamic scheduling model into a software tool, which was developed to verify & validate the proposed model s functionalities and the overall solution s practicality and scalability. The verification process started with an extensive testing of the model s static functionality using several well recognized scheduling problem sets available in literature, and the results showed that the developed algorithm can be ranked as one of the best state-of-the-art algorithms for solving resource-constrained project scheduling problems. To verify the software tool and the dynamic features of the developed model (or the formulation of data transfers from one optimization stage to the next), a case study was implemented on a construction entity in the Arabian Gulf area, having a mega project under construction, with all aspects to resemble an enterprise structure. The case study results showed that the proposed solution reasonably performed under large scale practical application (where all optimization targets were met in reasonable time) for all designed schedule preparation processes (baseline, progress updates, look-ahead schedules, and what-if schedules). Finally, to confirm and validate the effectiveness and practicality of the proposed solution, the solution's framework and the verification results were presented to field experts, and their opinions were collected through validation forms. The feedbacks received were very positive, where field experts/practitioners confirmed that the proposed solution achieved the main functionalities as designed in the solution s framework, and performed efficiently under the complexity of the applied case study

    Enhanced Harris's Hawk algorithm for continuous multi-objective optimization problems

    Get PDF
    Multi-objective swarm intelligence-based (MOSI-based) metaheuristics were proposed to solve multi-objective optimization problems (MOPs) with conflicting objectives. Harris’s hawk multi-objective optimizer (HHMO) algorithm is a MOSIbased algorithm that was developed based on the reference point approach. The reference point is determined by the decision maker to guide the search process to a particular region in the true Pareto front. However, HHMO algorithm produces a poor approximation to the Pareto front because lack of information sharing in its population update strategy, equal division of convergence parameter and randomly generated initial population. A two-step enhanced non-dominated sorting HHMO (2SENDSHHMO) algorithm has been proposed to solve this problem. The algorithm includes (i) a population update strategy which improves the movement of hawks in the search space, (ii) a parameter adjusting strategy to control the transition between exploration and exploitation, and (iii) a population generating method in producing the initial candidate solutions. The population update strategy calculates a new position of hawks based on the flush-and-ambush technique of Harris’s hawks, and selects the best hawks based on the non-dominated sorting approach. The adjustment strategy enables the parameter to adaptively changed based on the state of the search space. The initial population is produced by generating quasi-random numbers using Rsequence followed by adapting the partial opposition-based learning concept to improve the diversity of the worst half in the population of hawks. The performance of the 2S-ENDSHHMO has been evaluated using 12 MOPs and three engineering MOPs. The obtained results were compared with the results of eight state-of-the-art multi-objective optimization algorithms. The 2S-ENDSHHMO algorithm was able to generate non-dominated solutions with greater convergence and diversity in solving most MOPs and showed a great ability in jumping out of local optima. This indicates the capability of the algorithm in exploring the search space. The 2S-ENDSHHMO algorithm can be used to improve the search process of other MOSI-based algorithms and can be applied to solve MOPs in applications such as structural design and signal processing

    Evolving machine learning and deep learning models using evolutionary algorithms

    Get PDF
    Despite the great success in data mining, machine learning and deep learning models are yet subject to material obstacles when tackling real-life challenges, such as feature selection, initialization sensitivity, as well as hyperparameter optimization. The prevalence of these obstacles has severely constrained conventional machine learning and deep learning methods from fulfilling their potentials. In this research, three evolving machine learning and one evolving deep learning models are proposed to eliminate above bottlenecks, i.e. improving model initialization, enhancing feature representation, as well as optimizing model configuration, respectively, through hybridization between the advanced evolutionary algorithms and the conventional ML and DL methods. Specifically, two Firefly Algorithm based evolutionary clustering models are proposed to optimize cluster centroids in K-means and overcome initialization sensitivity as well as local stagnation. Secondly, a Particle Swarm Optimization based evolving feature selection model is developed for automatic identification of the most effective feature subset and reduction of feature dimensionality for tackling classification problems. Lastly, a Grey Wolf Optimizer based evolving Convolutional Neural Network-Long Short-Term Memory method is devised for automatic generation of the optimal topological and learning configurations for Convolutional Neural Network-Long Short-Term Memory networks to undertake multivariate time series prediction problems. Moreover, a variety of tailored search strategies are proposed to eliminate the intrinsic limitations embedded in the search mechanisms of the three employed evolutionary algorithms, i.e. the dictation of the global best signal in Particle Swarm Optimization, the constraint of the diagonal movement in Firefly Algorithm, as well as the acute contraction of search territory in Grey Wolf Optimizer, respectively. The remedy strategies include the diversification of guiding signals, the adaptive nonlinear search parameters, the hybrid position updating mechanisms, as well as the enhancement of population leaders. As such, the enhanced Particle Swarm Optimization, Firefly Algorithm, and Grey Wolf Optimizer variants are more likely to attain global optimality on complex search landscapes embedded in data mining problems, owing to the elevated search diversity as well as the achievement of advanced trade-offs between exploration and exploitation

    Channel parameter tuning in a hybrid Wi-Fi-Dynamic Spectrum Access Wireless Mesh Network

    Get PDF
    This work addresses Channel Assignment in a multi-radio multi-channel (MRMC) Wireless Mesh Network (WMN) using both Wi-Fi and Dynamic Spectrum Access (DSA) spectrum bands and standards. This scenario poses new challenges because nodes are spread out geographically so may have differing allowed channels and experience different levels of external interference in different channels. A solution must meet two conflicting requirements simultaneously: 1) avoid or minimise interference within the network and from external interference sources, and 2) maintain connectivity within the network. These two requirements must be met while staying within the link constraints and the radio interface constraints, such as only assigning as many channels to a node as it has radios. This work's original contribution to the field is a unified framework for channel optimisation and assignment in a WMN that uses both DSA and traditional Wi-Fi channels for interconnectivity. This contribution is realised by providing and analysing the performance of near-optimal Channel Assignment (CA) solutions using metaheuristic algorithms for the MRMC WMNs using DSA bands. We have created a simulation framework for evaluating the algorithms. The performance of Simulated Annealing, Genetic Algorithm, Differential Evolution, and Particle Swarm Optimisation algorithms have been analysed and compared for the CA optimisation problem. We introduce a novel algorithm, used alongside the metaheuristic optimisation algorithms, to generate feasible candidate CA solutions. Unlike previous studies, this sensing and CA work takes into account the requirement to use a Geolocation Spectrum Database (GLSD) to get the allowed channels, in addition to using spectrum sensing to identify and estimate the cumulative severity of both internal and external interference sources. External interference may be caused by other secondary users (SUs) in the vicinity or by primary transmitters of the DSA band whose emissions leak into adjacent channels, next-toadjacent, or even into further channels. We use signal-to-interference-plus-noise ratio (SINR) as the optimisation objective. This incorporates any possible source or type of interference and makes our method agnostic to the protocol or technology of the interfering devices while ensuring that the received signal level is high enough for connectivity to be maintained on as many links as possible. To support our assertion that SINR is a reasonable criterion on which to base the optimisation, we have carried out extensive outdoor measurements in both line-of-sight and wooded conditions in the television white space (TVWS) DSA band and the 5 GHz Wi-Fi band. These measurements show that SINR is useful as a performance measure, especially when the interference experienced on a link is high. Our statistical analysis shows that SINR effectively differentiates the performance of different channels and that SINR is well correlated with throughput and is thus a good predictor of end-user experience, despite varying conditions. We also identify and analyse the idle times created by Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) contention-based Medium Access Control (MAC) operations and propose the use of these idle times for spectrum sensing to measure the SINR on possible channels. This means we can perform spectrum sensing with zero spectrum sensing delay experienced by the end user. Unlike previous work, this spectrum sensing is transparent and can be performed without causing any disruption to the normal data transmission of the network. We conduct Markov chain analysis to find the expected length of time of a sensing window. We also derive an efficient minimum variance unbiased estimator of the interference plus noise and show how the SINR can be found using this estimate. Our estimation is more granular, accurate, and appropriate to the problem of Secondary User (SU)-SU coexistence than the binary hypothesis testing methods that are most common in the literature. Furthermore, we construct confidence intervals based on the probability density function derived for the observations. This leads to finding and showing the relationships between the number of sampling windows and sampling time, the interference power, and the achievable confidence interval width. While our results coincide with (and thus are confirmed by) some key previous recommendations, ours are more precise, granular, and accurate and allow for application to a wider range of operating conditions. Finally, we present alterations to the IEEE 802.11k protocol to enable the reporting of spectrum sensing results to the fusion or gateway node and algorithms for distributing the Channel Assignment once computed. We analyse the convergence rate of the proposed procedures and find that high network availability can be maintained despite the temporary loss of connectivity caused by the channel switching procedure. This dissertation consolidates the different activities required to improve the channel parameter settings of a multi-radio multi-channel DSA-WMN. The work facilitates the extension of Internet connectivity to the unconnected or unreliably connected in rural or peri-urban areas in a more cost-effective way, enabling more meaningful and affordable access technologies. It also empowers smaller players to construct better community networks for sharing local content. This technology can have knock-on effects of improved socio-economic conditions for the communities that use it
    corecore