26 research outputs found

    Software/Hardware Co-Design to Improve Productivity, Portability, and Performance of Loop-Task Parallel Applications

    Full text link
    Computer architects are increasingly turning to programmable accelerators tailored for narrower classes of applications in order to achieve high performance and energy efficiency. A continuing challenge with accelerators is enabling the programmer to easily extract maximum performance without intimate knowledge of the underlying microarchitecture. It is important to consider productivity and portability, in addition to performance, as first-class metrics when developing and evaluating modern computing platforms. Software-centric approaches to achieving 3P computing platforms are compelling, but sacrifice efficiency and flexibility by hiding parallel abstractions from hardware and limiting the scope of the application domain. This thesis proposes a new software/hardware co-design approach to achieving 3P platforms, called the loop-task accelerator (LTA) platform, that provides high productivity and portability without sacrificing performance or efficiency across a wide range of applications. The LTA platform addresses the weaknesses of existing approaches that are identified through detailed experimentation with and analysis of modern application development. Discussion of an early attempt at a hardware-centric approach to achieving 3P platforms provides insight into area-efficient accelerator designs and highlights the need for innovations in both software and hardware. The LTA platform focuses on exploiting loop-task parallelism by exposing loop-tasks as a common parallel abstraction at the programming API, runtime, ISA, and microarchitectural levels. The LTA programming API uses the parallel_for construct to express loop-tasks that can be exploited both across cores and within a core, the LTA runtime distributes loop-tasks across cores, and a new xpfor instruction explicitly encodes loop-tasks as functions applied to a range of loop iterations. This thesis introduces a novel task-coupling taxonomy that captures how tasks can be coupled in both space and time. The LTA engine template can be configured at design time with variable spatial and temporal task coupling to accelerate the execution of both regular and irregular loop-tasks within a core. The LTA platform is evaluated with respect to the 3P’s using a vertically integrated research methodology. Compared to an in-order multi-core baseline, the LTA platform yields average improvements of 5.5× in raw performance, 2.5× in performance per area, and 1.2× in energy efficiency, while offering high productivity and portability

    On expressing different concurrency paradigms on virtual execution environment

    Get PDF
    Virtual execution environments (VEE) such as the Java Virtual Machine (JVM) and the Microsoft Common Language Runtime (CLR) have been designed when the dominant computer architecture featured a Von-Neumann interface to programs: a single processor hiding all the complexity of parallel computations inside its design. Programs are expressed in an intermediate form that is executed by the VEE that defines an abstract computational model in which the concurrency model has been influenced by these design choices and it basically exposes the multi-threading model of the underlying operating system. Recently computer systems have introduced computational units in which concurrency is explicit and under program control. Relevant examples are the Graphical Processing Units (GPU such as Nvidia or AMD) and the Cell BE architecture which allow for explicit control of single processing unit, local memories and communication channels. Unfortunately programs designed for Virtual Machines cannot access to these resources since are not available through the abstractions provided by the VEE. A major redesign of VEEs seems to be necessary in order to bridge this gap. In this thesis we study the problem of exposing non-von Neumann computing resources within the Virtual Machine without need for a redesign of the whole execution infrastructure. In this work we express parallel computations relying on extensible meta-data and reflection to encode information. Meta-programming techniques are then used to rewrite the program into an equivalent one using the special purpose underlying architecture. We provide a case study in which this approach is applied to compiling Common Intermediate Language (CIL) methods to multi-core GPUs; we show that it is possible to access these non-standard computing resources without any change to the virtual machine design

    Efficient coherence and consistency for specialized memory hierarchies

    Get PDF
    As the benefits from transistor scaling slow down, specialization is becoming increasingly important for a wide range of applications. Although traditional heterogeneous systems work well for streaming, data parallel applications, they are inefficient for emerging applications, like graph analytics workloads, with fine-grained synchronization, relaxed atomics, and more general sharing patterns. Heterogeneous systems are also difficult to program, which makes it harder for programmers to take advantage of the potential benefits of specialization. This thesis redesigns the memory hierarchy of heterogeneous systems to make heterogeneous systems more efficient and easier to use. In particular, we focus on three key sources of inefficiency in the memory hierarchy of modern heterogeneous systems: (1) a unified global address space, (2) the cache coherence protocol, and (3) the memory consistency model. A unified global address space makes it easier to write programs for heterogeneous systems. Although industry has recently begun to provide a unified global address space across CPUs and accelerators (primarily GPUs), there are many inefficiencies. For example, emerging applications with fine-grained synchronization need better support for coherence and consistency. We find that simple coherence and complex consistency are key sources of inefficiency. To resolve this problem, we adjust the division of complexity between the cache coherence protocol and memory consistency model: we introduce DeNovo for accelerators (DeNovoA), which extends DeNovo’s hybrid, software-driven hardware coherence protocol to heterogeneous systems. Unlike current coherence protocols for heterogeneous systems, DeNovoA obtains ownership for written data, enables heterogeneous systems to use the simpler sequentially consistent for data-race-free (SC-for-DRF, or DRF) memory consistency model, and provides both efficiency and programmability. Across a wide variety of applications, DeNovoA with a DRF memory consistency model either outperforms or provides comparable efficiency to a the state-of-the-art approach. Although DRF is easier to use and works well for most applications, there are some corner cases where its overheads are unnecessary and hurt performance. This led to the introduction of relaxed atomics in the memory consistency models for multi-core CPUs and heterogeneous systems. Although relaxed atomics can significantly improve performance, they are very difficult to use correctly. We address the impact of relaxed atomics on memory consistency models for heterogeneous systems by creating a new memory consistency model, Data-Race-Free-Relaxed or DRFrlx. DRFrlx extends the existing DRF memory consistency models to provide SC-centric semantics for all common uses of relaxed atomics in heterogeneous systems while retaining their efficiency benefits. Thus, DRFrlx makes it easier for programmers to safely use relaxed atomics. Although current heterogeneous systems are adopting unified global address spaces, specialized memories such as scratchpads still exist in disjoint, private address spaces. This increases programming complexity and causes inefficiencies that negate some of the benefits of specialization. We introduce a new memory organization, stash, that mitigates the inefficiencies of specialized memories by integrating them into the coherent, globally visible address space. Stash makes it easier for programmers to use specialized memories and retains their efficiency benefits. Finally, to better understand the tradeoffs and scalability of different coherence protocols and consistency models, we created a suite of synchronization microbenchmarks, HeteroSync. HeteroSync contains various fine-grained synchronization and relaxed atomics algorithms. Moreover, HeteroSync is highly configurable and provides a standard set of fine-grained synchronization microbenchmarks to compare the efficiency of different approaches. In summary, this thesis questions the state-of-the-art approaches for designing memory hierarchies of heterogeneous systems, and shows that the current techniques provide neither efficiency nor programmability for emerging workloads. We demonstrate how DeNovoA with a DRFrlx memory consistency model improves efficiency and programmability for many heterogeneous applications and makes it easier for programmers to use heterogeneous systems

    Autonomic behavioural framework for structural parallelism over heterogeneous multi-core systems.

    Get PDF
    With the continuous advancement in hardware technologies, significant research has been devoted to design and develop high-level parallel programming models that allow programmers to exploit the latest developments in heterogeneous multi-core/many-core architectures. Structural programming paradigms propose a viable solution for e ciently programming modern heterogeneous multi-core architectures equipped with one or more programmable Graphics Processing Units (GPUs). Applying structured programming paradigms, it is possible to subdivide a system into building blocks (modules, skids or components) that can be independently created and then used in di erent systems to derive multiple functionalities. Exploiting such systematic divisions, it is possible to address extra-functional features such as application performance, portability and resource utilisations from the component level in heterogeneous multi-core architecture. While the computing function of a building block can vary for di erent applications, the behaviour (semantic) of the block remains intact. Therefore, by understanding the behaviour of building blocks and their structural compositions in parallel patterns, the process of constructing and coordinating a structured application can be automated. In this thesis we have proposed Structural Composition and Interaction Protocol (SKIP) as a systematic methodology to exploit the structural programming paradigm (Building block approach in this case) for constructing a structured application and extracting/injecting information from/to the structured application. Using SKIP methodology, we have designed and developed Performance Enhancement Infrastructure (PEI) as a SKIP compliant autonomic behavioural framework to automatically coordinate structured parallel applications based on the extracted extra-functional properties related to the parallel computation patterns. We have used 15 di erent PEI-based applications (from large scale applications with heavy input workload that take hours to execute to small-scale applications which take seconds to execute) to evaluate PEI in terms of overhead and performance improvements. The experiments have been carried out on 3 di erent Heterogeneous (CPU/GPU) multi-core architectures (including one cluster machine with 4 symmetric nodes with one GPU per node and 2 single machines with one GPU per machine). Our results demonstrate that with less than 3% overhead, we can achieve up to one order of magnitude speed-up when using PEI for enhancing application performance

    Proactive Adaptation in Self-Organizing Task-based Runtime Systems for Different Computing Classes

    Get PDF
    Moderne Computersysteme bieten Anwendern und Anwendungsentwicklern ein hohes Maß an Parallelität und Heterogenität. Die effiziente Nutzung dieser Systeme erfordert jedoch tiefgreifende Kenntnisse, z.B. der darunterliegenden Hardware-Plattform und den notwendigen Programmiermodellen, und umfangreiche Arbeit des Entwicklers. In dieser Thesis bezieht sich die effiziente Nutzung auf die Gesamtausführungszeit der Anwendungen, den Energieverbrauch des Systems, die maximale Temperatur der Verarbeitungseinheiten und die Zuverlässigkeit des Systems. Neben den verschiedenen Optimierungszielen muss ein Anwendungsentwickler auch die spezifischen Einschränkungen und Randbedingungen des Systems berücksichtigen, wie z. B. Deadlines oder Sicherheitsgarantien, die mit bestimmten Anwendungsbereichen einhergehen. Diese Komplexität heterogener Systeme macht es unmöglich, alle potenziellen Systemzustände und Umwelteinflüsse, die zur Laufzeit auftreten können, vorherzusagen. Die System- und Anwendungsentwickler sind somit nicht in der Lage, zur Entwurfszeit festzulegen, wie das System und die Anwendungen in allen möglichen Situationen reagieren sollen. Daher ist es notwendig, die Systeme zur Laufzeit der aktuellen Situation anzupassen, um ihr Verhalten entsprechend zu optimieren. In eingebetteten Systemen mit begrenzten Kühlkapazitäten muss z.B. bei Erreichen einer bestimmten Temperaturschwelle eine Lastverteilung vorgenommen, die Frequenz verringert oder Verarbeitungseinheiten abgeschaltet werden, um die Wärmeentwicklung zu reduzieren. Normalerweise reicht es aber nicht aus, einfach nur auf einen ungünstigen Systemzustand zu reagieren. Das Ziel sollte darin bestehen, ungünstige oder fehlerhafte Systemzustände vor dem Auftreten zu vermeiden, um die Notwendigkeit des Aufrufs von Notfallfunktionen zu verringern und die Benutzerfreundlichkeit zu verbessern. Anstatt beispielsweise die Wärmeentwicklung durch eine Neuverteilung der Anwendungen zu reduzieren, könnten proaktive Mechanismen kritische Temperaturen bereits im Vorfeld vermeiden, indem sie bestimmte unkritische Aufgaben verzögern oder deren Genauigkeit oder QoS verringern. Auf diese Weise wird die Systemlast reduziert, bevor ein kritischer Punkt erreicht wird. Lösungen des aktuellen Stands der Technik wie einheitliche Programmiersprachen oder Laufzeitsysteme adressieren einige der oben genannten Herausforderungen, jedoch existiert kein Ansatz, der in der Lage ist, eine Optimierung mehrerer sich widersprechender Zielfunktionen dynamisch und vor allem proaktiv durchzuführen. Ein Konzept, das diese komplexe Aufgabe für den Entwickler übernimmt und eine Möglichkeit zur dynamischen und proaktiven Anpassung an Veränderungen bietet, ist die Selbstorganisation. Selbstorganisation ist jedoch definiert als ein Prozess ohne externe Kontrolle oder Steuerung. Im Kontext der Systemoptimierung kann dies leicht zu unerwünschten Ergebnissen führen. Ein Ansatz, der Selbstorganisation mit einem Kontrollmechanismus kombiniert, welcher auf Robustheit und Widerstandsfähigkeit gegenüber äußeren Störungen abzielt, ist Organic Computing. Das bestimmende Merkmal von Organic Computing ist eine Observer/Controller-Architektur. Das Konzept dieser Architektur besteht darin, den aktuellen Zustand des Systems und der Umgebung zu überwachen, diese Daten zu analysieren und auf der Grundlage dieser Analyse Entscheidungen über das zukünftige Systemverhalten zu treffen. Organic Computing ermöglicht es also auf der Grundlage der vergangenen und des aktuellen Zustands proaktiv Mechanismen auszuwählen und auszulösen, die das System optimieren und unerwünschte Zustände vermeiden. Um die Vorteile des Organic Computings auf moderne heterogene Systeme zu übertragen, kombiniere ich den Organic Computing-Ansatz mit einem Laufzeitsystem. Laufzeitsysteme sind ein vielversprechender Kandidat für die Umsetzung des Organic Computing-Ansatzes, da sie bereits die Ausführung von Anwendungen überwachen und steuern. Insbesondere betrachte und bearbeite ich in dieser Dissertation die folgenden Forschungsthemen, indem ich die Konzepte des Organic Computings und der Laufzeitsysteme kombiniere: • Erfassen des aktuellen Systemzustands durch Überwachung von Sensoren und Performance Countern • Vorhersage zukünftiger Systemzustände durch Analyse des vergangenen Verhaltens • Nutzung von Zustandsinformationen zur proaktiven Anpassung des Systems Ich erweitere das Thema der Erfassung von Systemzuständen auf zwei Arten. Zunächst führe ich eine neuartige heuristische Metrik zur Berechnung der Zuverlässigkeit einer Verarbeitungseinheit ein, die auf symptombasierter Fehlererkennung basiert. Symptombasierte Fehlererkennung ist eine leichtgewichtige Methode zur dynamischen Erkennung von soften Hardware-Fehlern durch Überwachung des Ausführungsverhaltens mit Performance Countern. Die dynamische Erkennung von Fehlern ermöglicht dann die Berechnung einer heuristischen Fehlerrate einer Verarbeitungseinheit in einem bestimmten Zeitfenster. Die Fehlerrate wird verwendet, um die Anzahl der erforderlichen Ausführungen einer Anwendung zu berechnen, um eine bestimmte Ergebniszuverlässigkeit, also eine Mindestwahrscheinlichkeit für ein korrektes Ergebnis, zu gewährleisten. Ein wichtiger Aspekt der Zustandserfassung ist die Minimierung des entstehenden Overheads. Ich verringere die Anzahl der für OpenMP-Tasks notwendigen Profiling-Durchläufe durch Thread-Interpolation und Überprüfungen des Skalierungsverhaltens. Zusätzlich untersuche ich die Vorhersage von OpenCL Task-Ausführungszeiten. Die Prädiktoren der Ausführungszeiten werden mit verschiedenen maschinellen Lernalgorithmen trainiert. Als Input werden Profile der Kernel verwendet, die durch statische Codeanalyse erstellt wurden. Um in dieser Dissertation zukünftige Systemzustände vorherzusagen, sollen Anwendungen vorausgesagt werden, die in naher Zukunft im System vorkommen werden. In Kombination mit der Ausführungsdatenbank ermöglicht dies die Schätzung der anstehenden Kosten, die das System zu bewältigen hat. In dieser Arbeit werden zwei Mechanismen zur Vorhersage von Anwendungen/Tasks entwickelt. Der erste Prädiktor zielt darauf ab, neue Instanzen unabhängiger Tasks vorherzusagen. Der zweite Mechanismus betrachtet Ausführungsmuster abhängiger Anwendungen und sagt auf dieser Grundlage zukünftig auftretende Anwendungen vorher. Beide Mechanismen verwenden eine Vorhersagetabelle, die auf Markov-Prädiktoren und dem Abgleich von Mustern basiert. In dieser Arbeit wird das Wissen, das durch die Systemüberwachung und die Vorhersage zukünftiger Anwendungen gewonnen wird, verwendet, um die Optimierungsziele des Systems proaktiv in Einklang zu bringen und zu gewichten. Dies geschieht durch eine Reihe von Regeln, die eine Systemzustandsbeschreibung, bestehend aus dem aktuellen Zustand, Vorhersagen und Randbedingungen bzw. Beschränkungen, auf einen Vektor aus Gewichten abbilden. Zum Erlernen der Regelmenge wird ein Extended Classifer System (XCS) eingesetzt. Das XCS ist in eine hierarchische Architektur eingebettet, die nach den Prinzipien des Organic Computing entworfen wurde. Eine wichtige Designentscheidung ist dabei die Auslagerung der Erstellung neuer Regeln an einen Offline-Algorithmus, der einen Simulator nutzt und parallel zum normalen Systemablauf ausgeführt wird. Dadurch wird sichergestellt, dass keine ungetesteten Regeln, deren Auswirkungen noch nicht bekannt sind, dem laufenden System hinzugefügt werden. Die sich daraus ergebenden Gewichte werden schließlich verwendet, um eine Bewertungsfunktion für List Scheduling-Algorithmen zu erstellen. Diese Dissertation erweitert das Forschungsgebiet der Scheduling-Algorithmen durch zwei Mechanismen für dynamisches Scheduling. Die erste Erweiterung konzentriert sich auf nicht sicherheitskritische Systeme, die Prioritäten verwenden, um die unterschiedliche Wichtigkeit von Tasks auszudrücken. Da statische Prioritäten in stark ausgelasteten Systemen zu Starvation führen können, habe ich einen dynamischen Ageing-Mechanismus entwickelt, der dazu in der Lage ist, die Prioritäten der Tasks entsprechend der aktuellen Auslastung und ihrer Wartezeiten anzupassen. Dadurch reduziert der Mechanismus die Gesamtlaufzeit über alle Tasks und die Wartezeit für Tasks mit niedrigerer Priorität. Noch ist eine große Anzahl von Anwendungen nicht dazu bereit, den hohen Grad an Parallelität zu nutzen, den moderne Computersysteme bieten. Ein Konzept, das versucht dieses Problem zu lösen, indem es mehrere verschiedene Prozesse auf demselben Rechenknoten zur Ausführung bringt, ist das Co-Scheduling. In dieser Dissertation stelle ich einen neuartigen Co-Scheduling-Mechanismus vor, welcher die Task-Schedules mehrerer Laufzeitsysteminstanzen optimiert, die auf demselben Rechenknoten ausgeführt werden. Um die notwendigen Informationen zwischen den Laufzeitsysteminstanzen zu teilen, speichert der Mechanismus die Daten in Shared Memory. Sobald ein Laufzeitsystem neue Tasks in das System einfügt, prüft der Mechanismus, ob die Berechnung eines neuen Schedules sinnvoll ist. Wird die Entscheidung getroffen, einen neuen Schedule zu berechnen, setzt der Mechanismus Simulated Annealing ein, um alle Tasks, die bisher noch nicht mit ihrer Ausführung begonnen haben, neu auf Ausführungseinheiten abzubilden. Zusammenfassend lässt sich sagen, dass diese Arbeit neuartige Mechanismen und Algorithmen sowie Erweiterungen zu verschiedenen Forschungsgebieten anbietet, um ein proaktives selbst-organisierendes System zu implementieren, das sich an neue und unbekannte Situationen anpassen kann. Dabei wird die Komplexität für Benutzer und Anwendungsentwickler reduziert, indem die Entscheidungsfindung in das System selbst ausgelagert wird. Gleichzeitig sorgt dieser Ansatz für eine effiziente Nutzung der Ressourcen des Systems. Insgesamt leistet diese Arbeit die folgenden Beiträge zur Erweiterung des Stands der Forschung: • Einführung einer neuartigen heuristischen Metrik zur Messung der Zuverlässigkeit von Verarbeitungseinheiten. Die Metrik basiert auf einer leichtgewichtigen Methode zur Fehlererkennung, genannt symptombasierte Fehlererkennung. Mit der symptombasierten Fehlererkennung ist es möglich, mehrere injizierte Fehlerklassen und Interferenzen, die Soft-Hardware-Fehler simulieren, sowohl auf einer CPU als auch auf einer GPU zuverlässig zu erkennen. Darüber hinaus werden diese Ergebnisse durch Welch\u27s t-Test statistisch bestätigt. • Vorschlag eines Vorhersagemodells für die Ausführungszeit von OpenCL Kerneln, das auf statischer Code-Analyse basiert. Das Modell ist in der Lage, die schnellste Verarbeitungseinheit aus einer Menge von Verarbeitungseinheiten mit einer Genauigkeit von im schlechtesten Fall 69 %69\,\% auszuwählen. Zum Vergleich: eine Referenzvariante, welche immer den Prozessor vorhersagt, der die meisten Kernel am schnellsten ausführt, erzielt eine Genauigkeit von 25 %25\,\%. Im besten Fall erreicht das Modell eine Genauigkeit von bis zu 83 %83\,\%. • Bereitstellung von zwei Prädiktoren für kommende Tasks/Anwendungen. Der erste Mechanismus betrachtet unabhängige Tasks, die ständig neue Task-Instanzen erstellen, der zweite abhängige Anwendungen, die Ausführungsmuster bilden. Dabei erzielt der erste Mechanismus bei der Vorhersage der Zeitspanne zwischen zwei aufeinanderfolgenden Task-Instanzen einen maximalen\\ sMAPEsMAPE-Wert von 4,33 %4,33\,\% für sporadische und 0,002 %0,002 \,\% für periodische Tasks. Darüber hinaus werden Tasks mit einem aperiodischen Ausführungsschema zuverlässig erkannt. Der zweite Mechanismus erreicht eine Genauigkeit von 77,6 %77,6 \,\% für die Vorhersage der nächsten anstehenden Anwendung und deren Startzeit. • Einführung einer Umsetzung eines hierarchischen Organic Computing Frameworks mit dem Anwendungsgebiet Task-Scheduling. Dieses Framework enthält u.a. ein modifiziertes XCS, für dessen Design und Implementierung ein neuartiger Reward-Mechanismus entwickelt wird. Der Mechanismus bedient sich dabei eines speziell für diesen Zweck entwickelten Simulators zur Berechnung von Task-Ausführungskosten. Das XCS bildet Beschreibungen des Systemzustands auf Gewichte zur Balancierung der Optimierungsziele des Systems ab. Diese Gewichte werden in einer Bewertungsfunktion für List Scheduling-Algorithmen verwendet. Damit wird in einem Evaluationsszenario, welches aus einem fünfmal wiederholten Muster aus Anwendungen besteht, eine Reduzierung der Gesamtlaufzeit um 10,4 %10,4\,\% bzw. 26,7 s26,7\,s, des Energieverbrauchs um 4,7 %4,7\,\% bzw. 2061,1 J2061,1\,J und der maximalen Temperatur der GPU um 3,6 %3,6\,\% bzw. 2,7K2,7 K erzielt. Lediglich die maximale Temperatur über alle CPU-Kerne erhöht sich um 6 %6\,\% bzw. 2,3 K2,3\,K. • Entwicklung von zwei Erweiterungen zur Verbesserung des dynamischen Task-Schedulings für einzelne und mehrere Prozesse, z.B. mehrere Laufzeitsysteminstanzen. Der erste Mechanismus, ein Ageing-Algorithmus, betrachtet nicht sicherheitskritische Systeme, welche Task-Prioritäten verwenden, um die unterschiedliche Bedeutung von Anwendungen darzustellen. Da es in solchen Anwendungsszenarien in Kombination mit hoher Systemauslastung zu Starvation kommen kann, passt der Mechanismus die Task-Prioritäten dynamisch an die aktuelle Auslastung und die Task-Wartezeiten an. Insgesamt erreicht dieser Mechanismus in zwei Bewertungsszenarien eine durchschnittliche Laufzeitverbesserung von 3,75 %3,75\,\% und 3,16 %3,16\,\% bei gleichzeitiger Reduzierung der Durchlaufzeit von Tasks mit niedrigerer Priorität um bis zu 25,67 %25,67\,\%. Der zweite Mechanismus ermöglicht die Optimierung von Schedules mehrerer Laufzeitsysteminstanzen, die parallel auf demselben Rechenknoten ausgeführt werden. Dieser Co-Scheduling-Ansatz verwendet Shared Memory zum Austausch von Informationen zwischen den Prozessen und Simulated Annealing zur Berechnung neuer Task-Schedules. In zwei Evaluierungsszenarien erzielt der Mechanismus durchschnittliche Laufzeitverbesserungen von 19,74 %19,74\,\% und 20,91 %20,91\,\% bzw. etwa 2,7 s2,7\,s und 3 s3\,s

    Modelli e strumenti di programmazione parallela per piattaforme many-core

    Get PDF
    The negotiation between power consumption, performance, programmability, and portability drives all computing industry designs, in particular the mobile and embedded systems domains. Two design paradigms have proven particularly promising in this context: architectural heterogeneity and many-core processors. Parallel programming models are key to effectively harness the computational power of heterogeneous many-core SoC. This thesis presents a set of techniques and HW/SW extensions that enable performance improvements and that simplify programmability for heterogeneous many-core platforms. The thesis contributions cover vertically the entire software stack for many-core platforms, from hardware abstraction layers running on top of bare-metal, to programming models; from hardware extensions for efficient parallelism support to middleware that enables optimized resource management within many-core platforms. First, we present mechanisms to decrease parallelism overheads on parallel programming runtimes for many-core platforms, targeting fine-grain parallelism. Second, we present programming model support that enables the offload of computational kernels within heterogeneous many-core systems. Third, we present a novel approach to dynamically sharing and managing many-core platforms when multiple applications coded with different programming models execute concurrently. All these contributions were validated using STMicroelectronics STHORM, a real embodiment of a state-of-the-art many-core system. Hardware extensions and architectural explorations were explored using VirtualSoC, a SystemC based cycle-accurate simulator of many-core platforms

    Optimizing for a Many-Core Architecture without Compromising Ease-of-Programming

    Get PDF
    Faced with nearly stagnant clock speed advances, chip manufacturers have turned to parallelism as the source for continuing performance improvements. But even though numerous parallel architectures have already been brought to market, a universally accepted methodology for programming them for general purpose applications has yet to emerge. Existing solutions tend to be hardware-specific, rendering them difficult to use for the majority of application programmers and domain experts, and not providing scalability guarantees for future generations of the hardware. This dissertation advances the validation of the following thesis: it is possible to develop efficient general-purpose programs for a many-core platform using a model recognized for its simplicity. To prove this thesis, we refer to the eXplicit Multi-Threading (XMT) architecture designed and built at the University of Maryland. XMT is an attempt at re-inventing parallel computing with a solid theoretical foundation and an aggressive scalable design. Algorithmically, XMT is inspired by the PRAM (Parallel Random Access Machine) model and the architecture design is focused on reducing inter-task communication and synchronization overheads and providing an easy-to-program parallel model. This thesis builds upon the existing XMT infrastructure to improve support for efficient execution with a focus on ease-of-programming. Our contributions aim at reducing the programmer's effort in developing XMT applications and improving the overall performance. More concretely, we: (1) present a work-flow guiding programmers to produce efficient parallel solutions starting from a high-level problem; (2) introduce an analytical performance model for XMT programs and provide a methodology to project running time from an implementation; (3) propose and evaluate RAP -- an improved resource-aware compiler loop prefetching algorithm targeted at fine-grained many-core architectures; we demonstrate performance improvements of up to 34.79% on average over the GCC loop prefetching implementation and up to 24.61% on average over a simple hardware prefetching scheme; and (4) implement a number of parallel benchmarks and evaluate the overall performance of XMT relative to existing serial and parallel solutions, showing speedups of up to 13.89x vs.~ a serial processor and 8.10x vs.~parallel code optimized for an existing many-core (GPU). We also discuss the implementation and optimization of the Max-Flow algorithm on XMT, a problem which is among the more advanced in terms of complexity, benchmarking and research interest in the parallel algorithms community. We demonstrate better speed-ups compared to a best serial solution than previous attempts on other parallel platforms

    High-Performance and Time-Predictable Embedded Computing

    Get PDF
    Nowadays, the prevalence of computing systems in our lives is so ubiquitous that we live in a cyber-physical world dominated by computer systems, from pacemakers to cars and airplanes. These systems demand for more computational performance to process large amounts of data from multiple data sources with guaranteed processing times. Actuating outside of the required timing bounds may cause the failure of the system, being vital for systems like planes, cars, business monitoring, e-trading, etc. High-Performance and Time-Predictable Embedded Computing presents recent advances in software architecture and tools to support such complex systems, enabling the design of embedded computing devices which are able to deliver high-performance whilst guaranteeing the application required timing bounds. Technical topics discussed in the book include: Parallel embedded platforms Programming models Mapping and scheduling of parallel computations Timing and schedulability analysis Runtimes and operating systems The work reflected in this book was done in the scope of the European project P SOCRATES, funded under the FP7 framework program of the European Commission. High-performance and time-predictable embedded computing is ideal for personnel in computer/communication/embedded industries as well as academic staff and master/research students in computer science, embedded systems, cyber-physical systems and internet-of-things.info:eu-repo/semantics/publishedVersio

    High Performance Embedded Computing

    Get PDF
    Nowadays, the prevalence of computing systems in our lives is so ubiquitous that we live in a cyber-physical world dominated by computer systems, from pacemakers to cars and airplanes. These systems demand for more computational performance to process large amounts of data from multiple data sources with guaranteed processing times. Actuating outside of the required timing bounds may cause the failure of the system, being vital for systems like planes, cars, business monitoring, e-trading, etc. High-Performance and Time-Predictable Embedded Computing presents recent advances in software architecture and tools to support such complex systems, enabling the design of embedded computing devices which are able to deliver high-performance whilst guaranteeing the application required timing bounds. Technical topics discussed in the book include: Parallel embedded platforms Programming models Mapping and scheduling of parallel computations Timing and schedulability analysis Runtimes and operating systemsThe work reflected in this book was done in the scope of the European project P SOCRATES, funded under the FP7 framework program of the European Commission. High-performance and time-predictable embedded computing is ideal for personnel in computer/communication/embedded industries as well as academic staff and master/research students in computer science, embedded systems, cyber-physical systems and internet-of-things
    corecore