34 research outputs found

    An Improved Object Detection and Trajectory Prediction Method for Traffic Conflicts Analysis

    Get PDF
    Although computer vision-based methods have seen broad utilisation in evaluating traffic situations, there is a lack of research on the assessment and prediction of near misses in traffic. In addition, most object detection algorithms are not very good at detecting small targets. This study proposes a combination of object detection and tracking algorithms, Inverse Perspective Mapping (IPM), and trajectory prediction mechanisms to assess near-miss events. First, an instance segmentation head was proposed to improve the accuracy of the object frame box detection phase. Secondly, IPM was applied to all detection results. The relationship between them is then explored based on their distance to determine whether there is a near-miss event. In this process, the moving speed of the target was considered as a parameter. Finally, the Kalman filter is used to predict the object\u27s trajectory to determine whether there will be a near-miss in the next few seconds. Experiments on Closed-Circuit Television (CCTV) datasets showed results of 0.94 mAP compared to other state-of-the-art methods. In addition to improved detection accuracy, the advantages of instance segmentation fused object detection for small target detection are validated. Therefore, the results will be used to analyse near misses more accurately

    Understanding cities with machine eyes: A review of deep computer vision in urban analytics

    Get PDF
    Modelling urban systems has interested planners and modellers for decades. Different models have been achieved relying on mathematics, cellular automation, complexity, and scaling. While most of these models tend to be a simplification of reality, today within the paradigm shifts of artificial intelligence across the different fields of science, the applications of computer vision show promising potential in understanding the realistic dynamics of cities. While cities are complex by nature, computer vision shows progress in tackling a variety of complex physical and non-physical visual tasks. In this article, we review the tasks and algorithms of computer vision and their applications in understanding cities. We attempt to subdivide computer vision algorithms into tasks, and cities into layers to show evidence of where computer vision is intensively applied and where further research is needed. We focus on highlighting the potential role of computer vision in understanding urban systems related to the built environment, natural environment, human interaction, transportation, and infrastructure. After showing the diversity of computer vision algorithms and applications, the challenges that remain in understanding the integration between these different layers of cities and their interactions with one another relying on deep learning and computer vision. We also show recommendations for practice and policy-making towards reaching AI-generated urban policies

    A Deep Learning Approach for Spatiotemporal-Data-Driven Traffic State Estimation

    Get PDF
    The past decade witnessed rapid developments in traffic data sensing technologies in the form of roadside detector hardware, vehicle on-board units, and pedestrian wearable devices. The growing magnitude and complexity of the available traffic data has fueled the demand for data-driven models that can handle large scale inputs. In the recent past, deep-learning-powered algorithms have become the state-of-the-art for various data-driven applications. In this research, three applications of deep learning algorithms for traffic state estimation were investigated. Firstly, network-wide traffic parameters estimation was explored. An attention-based multi-encoder-decoder (Att-MED) neural network architecture was proposed and trained to predict freeway traffic speed up to 60 minutes ahead. Att-MED was designed to encode multiple traffic input sequences: short-term, daily, and weekly cyclic behavior. The proposed network produced an average prediction accuracy of 97.5%, which was superior to the compared baseline models. In addition to improving the output performance, the model\u27s attention weights enhanced the model interpretability. This research additionally explored the utility of low-penetration connected probe-vehicle data for network-wide traffic parameters estimation and prediction on freeways. A novel sequence-to-sequence recurrent graph networks (Seq2Se2 GCN-LSTM) was designed. It was then trained to estimate and predict traffic volume and speed for a 60-minute future time horizon. The proposed methodology generated volume and speed predictions with an average accuracy of 90.5% and 96.6%, respectively, outperforming the investigated baseline models. The proposed method demonstrated robustness against perturbations caused by the probe vehicle fleet\u27s low penetration rate. Secondly, the application of deep learning for road weather detection using roadside CCTVs were investigated. A Vision Transformer (ViT) was trained for simultaneous rain and road surface condition classification. Next, a Spatial Self-Attention (SSA) network was designed to consume the individual detection results, interpret the spatial context, and modify the collective detection output accordingly. The sequential module improved the accuracy of the stand-alone Vision Transformer as measured by the F1-score, raising the total accuracy for both tasks to 96.71% and 98.07%, respectively. Thirdly, a real-time video-based traffic incident detection algorithm was developed to enhance the utilization of the existing roadside CCTV network. The methodology automatically identified the main road regions in video scenes and investigated static vehicles around those areas. The developed algorithm was evaluated using a dataset of roadside videos. The incidents were detected with 85.71% sensitivity and 11.10% false alarm rate with an average delay of 27.53 seconds. In general, the research proposed in this dissertation maximizes the utility of pre-existing traffic infrastructure and emerging probe traffic data. It additionally demonstrated deep learning algorithms\u27 capability of modeling complex spatiotemporal traffic data. This research illustrates that advances in the deep learning field continue to have a high applicability potential in the traffic state estimation domain

    A computer vision system for detecting and analysing critical events in cities

    Get PDF
    Whether for commuting or leisure, cycling is a growing transport mode in many cities worldwide. However, it is still perceived as a dangerous activity. Although serious incidents related to cycling leading to major injuries are rare, the fear of getting hit or falling hinders the expansion of cycling as a major transport mode. Indeed, it has been shown that focusing on serious injuries only touches the tip of the iceberg. Near miss data can provide much more information about potential problems and how to avoid risky situations that may lead to serious incidents. Unfortunately, there is a gap in the knowledge in identifying and analysing near misses. This hinders drawing statistically significant conclusions to provide measures for the built-environment that ensure a safer environment for people on bikes. In this research, we develop a method to detect and analyse near misses and their risk factors using artificial intelligence. This is accomplished by analysing video streams linked to near miss incidents within a novel framework relying on deep learning and computer vision. This framework automatically detects near misses and extracts their risk factors from video streams before analysing their statistical significance. It also provides practical solutions implemented in a camera with embedded AI (URBAN-i Box) and a cloud-based service (URBAN-i Cloud) to tackle the stated issue in the real-world settings for use by researchers, policy-makers, or citizens. The research aims to provide human-centred evidence that may enable policy-makers and planners to provide a safer built environment for cycling in London, or elsewhere. More broadly, this research aims to contribute to the scientific literature with the theoretical and empirical foundations of a computer vision system that can be utilised for detecting and analysing other critical events in a complex environment. Such a system can be applied to a wide range of events, such as traffic incidents, crime or overcrowding

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Smart Sensor Technologies for IoT

    Get PDF
    The recent development in wireless networks and devices has led to novel services that will utilize wireless communication on a new level. Much effort and resources have been dedicated to establishing new communication networks that will support machine-to-machine communication and the Internet of Things (IoT). In these systems, various smart and sensory devices are deployed and connected, enabling large amounts of data to be streamed. Smart services represent new trends in mobile services, i.e., a completely new spectrum of context-aware, personalized, and intelligent services and applications. A variety of existing services utilize information about the position of the user or mobile device. The position of mobile devices is often achieved using the Global Navigation Satellite System (GNSS) chips that are integrated into all modern mobile devices (smartphones). However, GNSS is not always a reliable source of position estimates due to multipath propagation and signal blockage. Moreover, integrating GNSS chips into all devices might have a negative impact on the battery life of future IoT applications. Therefore, alternative solutions to position estimation should be investigated and implemented in IoT applications. This Special Issue, “Smart Sensor Technologies for IoT” aims to report on some of the recent research efforts on this increasingly important topic. The twelve accepted papers in this issue cover various aspects of Smart Sensor Technologies for IoT

    Proc SEE-Pattaya 2021 Thailand

    Get PDF
    corecore