110 research outputs found

    Energy-Efficient Power Control in Multipath CDMA Channels via Large System Analysis

    Full text link
    This paper is focused on the design and analysis of power control procedures for the uplink of multipath code-division-multiple-access (CDMA) channels based on the large system analysis (LSA). Using the tools of LSA, a new decentralized power control algorithm aimed at energy efficiency maximization and requiring very little prior information on the interference background is proposed; moreover, it is also shown that LSA can be used to predict with good accuracy the performance and operational conditions of a large network operating at the equilibrium over a multipath channel, i.e. the power, signal-to-interference-plus-noise ratio (SINR) and utility profiles across users, wherein the utility is defined as the number of bits reliably delivered to the receiver for each energy-unit used for transmission. Additionally, an LSA-based performance comparison among linear receivers is carried out in terms of achieved energy efficiency at the equilibrium. Finally, the problem of the choice of the utility-maximizing training length is also considered. Numerical results show a very satisfactory agreement of the theoretical analysis with simulation results obtained with reference to systems with finite (and not so large) numbers of users.Comment: Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Cannes, France, September 15-18, 200

    Independent component analysis applications in CDMA systems

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2004Includes bibliographical references (leaves: 56)Text in English; Abstract: Turkish and Englishxi, 96 leavesBlind source separation (BSS) methods, independent component analysis (ICA) and independent factor analysis (IFA) are used for detecting the signal coming to a mobile user which is subject to multiple access interference in a CDMA downlink communication. When CDMA models are studied for different channel characteristics, it is seen that they are similar with BSS/ICA models. It is also showed that if ICA is applied to these CDMA models, desired user.s signal can be estimated successfully without channel information and other users. code sequences. ICA detector is compared with matched filter detector and other conventional detectors using simulation results and it is seen that ICA has some advantages over the other methods.The other BSS method, IFA is applied to basic CDMA downlink model. Since IFA has some convergence and speed problems when the number of sources is large, firstly basic CDMA model with ideal channel assumption is used in IFA application.With simulation of ideal CDMA channel, IFA is compared with ICA and matched filter.Furthermore, Pearson System-based ICA (PS-ICA) method is used forestimating non-Gaussian multipath fading channel coefficients. Considering some fading channel measurements showing that the fading channel coefficients may have an impulsive nature, these coefficients are modeled with an -stable distribution whose shape parameter takes values close to 2 which makes the distributions slightly impulsive. Simulation results are obtained to compare PS-ICA with classical ICA.Also IFA is applied to the single path CDMA downlink model to estimate fading channel by using the advantage of IFA which is the capability to estimate sources with wide class of distributions

    Cooperative diversity for the cellular uplink: Sharing strategies, performance analysis, and receiver design

    Get PDF
    In this thesis, we propose data sharing schemes for the cooperative diversity in a cellular uplink to exploit diversity and enhance throughput performance of the system. Particularly, we consider new two and three-or-more user decode and forward (DF) protocols using space time block codes. We discuss two-user and three-user amplify and forward (AF) protocols and evaluate the performance of the above mentioned data sharing protocols in terms of the bit error rate and the throughput in an asynchronous code division multiple access (CDMA) cellular uplink. We develop a linear receiver for joint space-time decoding and multiuser detection that provides full diversity and near maximum-likelihood performance.;We also focus on a practical situation where inter-user channel is noisy and cooperating users can not successfully estimate other user\u27s data. We further design our system model such that, users decide not to forward anything in case of symbol errors. Channel estimation plays an important role here, since cooperating users make random estimation errors and the base station can not have the knowledge of the errors or the inter-user channels. We consider a training-based approach for channel estimation. We provide an information outage probability analysis for the proposed multi-user sharing schemes. (Abstract shortened by UMI.)

    Achievable Rates, Optimal Signalling Schemes and Resource Allocation for Fading Wireless Channels

    Get PDF
    The proliferation of services involving the transmission of high rate data traffic over wireless channels makes it essential to overcome the detrimental effects of the wireless medium, such as fading and multiuser interference. This thesis is devoted to obtaining optimal resource allocation policies which exploit the transmitters' and receiver's knowledge about the fading to the network's advantage, to attain information theoretic capacity limits of fading wireless channels. The major focus of the thesis is on capacity results for fading code division multiple access (CDMA) channels, which have proved to be a robust way of combatting the multiuser interference in practical wireless networks. For these channels, we obtain the capacity region achievable with power control, as well as the power control policies that achieve the desired rate points on the capacity region. We provide practical one-user-at-a-time iterative algorithms to compute the optimal power distributions as functions of the fading. For the special case of sum capacity, some properties of the optimal policy, such as the number of simultaneously transmitting users, are obtained. We also investigate the effects of limited feedback on the capacity, and demonstrate that very coarse channel state information (CSI) is sufficient to benefit from power control as a means of increasing the capacity. The selection of the signature sequences also plays an important role in determining the capacity of CDMA systems. This thesis addresses the problem of jointly optimizing the signature sequences and power levels to maximize the sum capacity. The resulting policies are shown to be simple, consisting of orthogonal transmissions in time or signal space, and requiring only local CSI. We also provide an iterative way of updating the joint resource allocation policy, and extend our results to asynchronous, and multi-antenna CDMA systems. Rather than treating the received signal at the transmitters as interference, it is possible to treat it as free side information and use it for cooperation. The final part of the thesis provides power allocation policies for a fading Gaussian multiple access channel with user cooperation, which maximize the rates achievable by block Markov superposition coding, and also simplify the coding strategy

    Transmitter precoding for multi-antenna multi-user communications

    Get PDF
    Emerging wireless sensor networks and existing wireless cellular and ad hoc networks motivate the design of low-power receivers. Multi-user interference drastically reduces the energy efficiency of wireless multi-user communications by introducing errors in the bits being detected at the receiver. Interference rejection algorithms and multiple antenna techniques can significantly reduce the bit-error-rate at the receiver. Unfortunately, while interference rejection algorithms burden the receiver with heavy signal processing functionalities, thereby increasing the power consumption at the receiver, the small size of receivers, specifically in sensor networks and in downlink cellular communications, prohibits the use of multiple receive antennas. In a broadcast channel, where a central transmitter is transmitting independent streams to decentralized receivers, it is possible for the transmitter to have a priori knowledge of the interference. Multiple antennas can be used at the transmitter to enhance energy efficiency. In some systems, the transmitter has access to virtually an infinite source of power. A typical example would be the base station transmitter for the downlink of a cellular system. The power consumption at receivers can be reduced if some of the signal processing functionality of the receiver is moved to the transmitter.;In this thesis, we consider a wireless broadcast channel with a transmitter equipped with multiple antennas and having a priori knowledge of interference. Our objective is to minimize the receiver complexity by adding extra signal processing functions to the transmitter. We need to determine the optimal signal that should be transmitted so that interference is completely eliminated, and the benefits that can be obtained by using multiple transmit antennas can be maximized. We investigate the use of linear precoders, linear transformations made on the signal before transmission, for this purpose

    Pattern classification based multiuser detectors for CDMA communication systems

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Façonnement de l'Interférence en vue d'une Optimisation Globale d'un Système Moderne de Communication

    Get PDF
    A communication is impulsive whenever the information-bearing signal is burst-like in time. Examples of the impulsive concept are: impulse-radio signals, that is, wireless signals occurring within short intervals of time; optical signals conveyed by photons; speech signals represented by sound pressure variations; pulse-position modulated electrical signals; a sequence of arrival/departure events in a queue; neural spike trains in the brain. Understanding impulsive communications requires to identify what is peculiar to this transmission paradigm, that is, different from traditional continuous communications.In order to address the problem of understanding impulsive vs. non-impulsive communications, the framework of investigation must include the following aspects: the different interference statistics directly following from the impulsive signal structure; the different interaction of the impulsive signal with the physical medium; the actual possibility for impulsive communications of coding information into the time structure, relaxing the implicit assumption made in continuous transmissions that time is a mere support. This thesis partially addresses a few of the above issues, and draws future lines of investigation. In particular, we studied: multiple access channels where each user adopts time-hopping spread-spectrum; systems using a specific prefilter at the transmitter side, namely the transmit matched filter (also known as time reversal), particularly suited for ultrawide bandwidhts; the distribution function of interference for impulsive systems in several different settings.Une communication est impulsive chaque fois que le signal portant des informations est intermittent dans le temps et que la transmission se produit à rafales. Des exemples du concept impulsife sont : les signaux radio impulsifs, c’est-à-dire des signaux très courts dans le temps; les signaux optiques utilisé dans les systèmes de télécommunications; certains signaux acoustiques et, en particulier, les impulsions produites par le système glottale; les signaux électriques modulés en position d’impulsions; une séquence d’événements dans une file d’attente; les trains de potentiels neuronaux dans le système neuronal. Ce paradigme de transmission est différent des communications continues traditionnelles et la compréhension des communications impulsives est donc essentielle. Afin d’affronter le problème des communications impulsives, le cadre de la recherche doit inclure les aspects suivants : la statistique d’interférence qui suit directement la structure des signaux impulsifs; l’interaction du signal impulsif avec le milieu physique; la possibilité pour les communications impulsives de coder l’information dans la structure temporelle. Cette thèse adresse une partie des questions précédentes et trace des lignes indicatives pour de futures recherches. En particulier, nous avons étudié: un système d'accès multiple où les utilisateurs adoptent des signaux avec étalement de spectre par saut temporel (time-hopping spread spectrum) pour communiquer vers un récepteur commun; un système avec un préfiltre à l'émetteur, et plus précisément un transmit matched filter, également connu comme time reversal dans la littérature de systèmes à bande ultra large; un modèle d'interférence pour des signaux impulsifs

    Code-division multiplexing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 395-404).(cont.) counterpart. Among intra-cell orthogonal schemes, we show that the most efficient broadcast signal is a linear superposition of many binary orthogonal waveforms. The information set is also binary. Each orthogonal waveform is generated by modulating a periodic stream of finite-length chip pulses with a receiver-specific signature code that is derived from a special class of binary antipodal, superimposed recursive orthogonal code sequences. With the imposition of practical pulse shapes for carrier modulation, we show that multi-carrier format using cosine functions has higher bandwidth efficiency than the single-carrier format, even in an ideal Gaussian channel model. Each pulse is shaped via a prototype baseband filter such that when the demodulated signal is detected through a baseband matched filter, the resulting output samples satisfy the Generalized Nyquist criterion. Specifically, we propose finite-length, time overlapping orthogonal pulse shapes that are g-Nyquist. They are derived from extended and modulated lapped transforms by proving the equivalence between Perfect Reconstruction and Generalized Nyquist criteria. Using binary data modulation format, we measure and analyze the accuracy of various Gaussian approximation methods for spread-spectrum modulated (SSM) signalling ...We study forward link performance of a multi-user cellular wireless network. In our proposed cellular broadcast model, the receiver population is partitioned into smaller mutually exclusive subsets called cells. In each cell an autonomous transmitter with average transmit power constraint communicates to all receivers in its cell by broadcasting. The broadcast signal is a multiplex of independent information from many remotely located sources. Each receiver extracts its desired information from the composite signal, which consists of a distorted version of the desired signal, interference from neighboring cells and additive white Gaussian noise. Waveform distortion is caused by time and frequency selective linear time-variant channel that exists between every transmitter-receiver pair. Under such system and design constraints, and a fixed bandwidth for the entire network, we show that the most efficient resource allocation policy for each transmitter based on information theoretic measures such as channel capacity, simultaneously achievable rate regions and sum-rate is superposition coding with successive interference cancellation. The optimal policy dominates over its sub-optimal alternatives at the boundaries of the capacity region. By taking into account practical constraints such as finite constellation sets, frequency translation via carrier modulation, pulse shaping and real-time signal processing and decoding of finite-length waveforms and fairness in rate distribution, we argue that sub-optimal orthogonal policies are preferred. For intra-cell multiplexing, all orthogonal schemes based on frequency, time and code division are equivalent. For inter-cell multiplexing, non-orthogonal code-division has a larger capacity than its orthogonalby Ceilidh Hoffmann.Ph.D
    • …
    corecore