1,742 research outputs found

    Cross-layer schemes for performance optimization in wireless networks

    Get PDF
    Wireless networks are undergoing rapid progress and inspiring numerous applications. As the application of wireless networks becomes broader, they are expected to not only provide ubiquitous connectivity, but also support end users with certain service guarantees. End-to-end delay is an important Quality of Service (QoS) metric in multihop wireless networks. This dissertation addresses how to minimize end-to-end delay through joint optimization of network layer routing and link layer scheduling. Two cross-layer schemes, a loosely coupled cross-layer scheme and a tightly coupled cross-layer scheme, are proposed. The two cross-layer schemes involve interference modeling in multihop wireless networks with omnidirectional antenna. In addition, based on the interference model, multicast schedules are optimized to minimize the total end-to-end delay. Throughput is another important QoS metric in wireless networks. This dissertation addresses how to leverage the spatial multiplexing function of MIMO links to improve wireless network throughput. Wireless interference modeling of a half-duplex MIMO node is presented. Based on the interference model, routing, spatial multiplexing, and scheduling are jointly considered in one optimization model. The throughput optimization problem is first addressed in constant bit rate networks and then in variable bit rate networks. In a variable data rate network, transmitters can use adaptive coding and modulation schemes to change their data rates so that the data rates are supported by the Signal to Noise and Interference Ratio (SINR). The problem of achieving maximum throughput in a millimeter-wave wireless personal area network is studied --Abstract, page iv

    Wireless measurement Scheme for bandwidth Estimation in Multihop Wireless Adhoc network

    Get PDF
    The necessity to bear real time and multimedia application for users of Mobile 1D468;1D485;1D489;1D490;1D484; Network (1D474;1D468;1D475;1D46C;1D47B;) is becoming vital. Mobile 1D468;1D485;1D489;1D490;1D484; network facilitates decentralized network that can present multimedia users with mobility that they have demanded, if proficient 1D478;1D490;1D47A; multicast strategies were developed. By giving the guarantee of 1D478;1D490;1D47A; in 1D468;1D485;1D489;1D490;1D484; network, the proficient bandwidth estimation method plays a very important role. The research paper represented here presents a splendid method for estimating or measuring Bandwidth in 1D468;1D485;1D489;1D490;1D484; network whose character is decentralized in nature. Contrasting in the centralized formation, the bandwidth estimating in 1D468;1D485;1D489;1D490;1D484; is significant and this eventually makes an influence over the 1D478;1D490;1D47A; of the network communication. The admission control and dynamic bandwidth management method which is presented here, facilitates it with fairness and rate guarantees despite the distributed link layer fair scheduling being absent. Alteration has been made over 1D474;1D468;1D46A; layer and this method is appropriate where the peer-to-peer (1D477;1D7D0;1D477;) multimedia transmissions rates are amended in compliantly fashion.In the research work presented here the architecture of the 1D474;1D468;1D46A; layer has been altered and the data handling capacity has been increased. This technique is adopted to facilitate higher data rate transmission and eliminate congestion over the considerednetwork. The proposed technique implements the splitting of 1D474;1D468;1D46A; into two sub layer where one will be responsible for control data transmission while other effectively transmits the data bits. Thus it results into higher data rate transmission with better accuracy and optimized network throughput. The research work in the presented paper exhibits superior accuracy and is very much effective in bandwidth estimation and management application in multi hop Mobile Ad-H

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Mesh based and Hybrid Multicast routing protocols for MANETs: Current State of the art

    Get PDF
    This paper discusses various multicast routing protocols which are proposed in the recent past each having its own unique characteristic, with a motive of providing a complete understanding of these multicast routing protocols and present the scope of future research in this field. Further, the paper specifically discusses the current development in the development of mesh based and hybrid multicasting routing protocols. The study of this paper addresses the solution of most difficult task in Multicast routing protocols for MANETs under host mobility which causes multi-hop routing which is even more severe with bandwidth limitations. The Multicast routing plays a substantial part in MANETs

    A Multirate MAC Protocol for Reliable Multicast in Multihop Wireless Networks

    Get PDF
    Many multicast applications, such as audio/video streaming, file sharing or emergency reporting, are becoming quite common in wireless mobile environment, through the widespread deployment of 802.11-based wirelessnetworks. However, despite the growing interest in the above applications, the current IEEE 802.11 standard does not offer any medium access control (MAC) layer support to the efficient and reliable provision of multicast services. It does not provide any MAC-layer recovery mechanism for unsuccessful multicast transmissions. Consequently, lost frames cannot be detected, hence retransmitted, causing a significant quality of service degradation. In addition, 802.11 multicast traffic is sent at the basic data rate, often resulting in severe throughput reduction. In this work, we address these issues by presenting areliablemulticastMACprotocol for wirelessmultihopnetworks, which is coupled with a lightweight rate adaptation scheme. Simulation results show that our schemes provide high packet delivery ratio and when compared with other state-of-the-art solutions, they also provide reduced control overhead and data delivery dela

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference
    • …
    corecore