2,087 research outputs found

    Band Limited Signals Observed Over Finite Spatial and Temporal Windows: An Upper Bound to Signal Degrees of Freedom

    Full text link
    The study of degrees of freedom of signals observed within spatially diverse broadband multipath fields is an area of ongoing investigation and has a wide range of applications, including characterising broadband MIMO and cooperative networks. However, a fundamental question arises: given a size limitation on the observation region, what is the upper bound on the degrees of freedom of signals observed within a broadband multipath field over a finite time window? In order to address this question, we characterize the multipath field as a sum of a finite number of orthogonal waveforms or spatial modes. We show that (i) the "effective observation time" is independent of spatial modes and different from actual observation time, (ii) in wideband transmission regimes, the "effective bandwidth" is spatial mode dependent and varies from the given frequency bandwidth. These findings clearly indicate the strong coupling between space and time as well as space and frequency in spatially diverse wideband multipath fields. As a result, signal degrees of freedom does not agree with the well-established degrees of freedom result as a product of spatial degrees of freedom and time-frequency degrees of freedom. Instead, analogous to Shannon's communication model where signals are encoded in only one spatial mode, the available signal degrees of freedom in spatially diverse wideband multipath fields is the time-bandwidth product result extended from one spatial mode to finite modes. We also show that the degrees of freedom is affected by the acceptable signal to noise ratio (SNR) in each spatial mode.Comment: Submitted to IEEE Transactions on Signal Processin

    Fundamental Limits of Wideband Localization - Part II: Cooperative Networks

    Get PDF
    The availability of positional information is of great importance in many commercial, governmental, and military applications. Localization is commonly accomplished through the use of radio communication between mobile devices (agents) and fixed infrastructure (anchors). However, precise determination of agent positions is a challenging task, especially in harsh environments due to radio blockage or limited anchor deployment. In these situations, cooperation among agents can significantly improve localization accuracy and reduce localization outage probabilities. A general framework of analyzing the fundamental limits of wideband localization has been developed in Part I of the paper. Here, we build on this framework and establish the fundamental limits of wideband cooperative location-aware networks. Our analysis is based on the waveforms received at the nodes, in conjunction with Fisher information inequality. We provide a geometrical interpretation of equivalent Fisher information for cooperative networks. This approach allows us to succinctly derive fundamental performance limits and their scaling behaviors, and to treat anchors and agents in a unified way from the perspective of localization accuracy. Our results yield important insights into how and when cooperation is beneficial.Comment: To appear in IEEE Transactions on Information Theor

    Capacity bounds and estimates for the finite scatterers MIMO wireless channel

    Get PDF
    We consider the limits to the capacity of the multiple-input–multiple-output wireless channel as modeled by the finite scatterers channel model, a generic model of the multipath channel which accounts for each individual multipath component. We assume a normalization that allows for the array gain due to multiple receive antenna elements and, hence, can obtain meaningful limits as the number of elements tends to infinity. We show that the capacity is upper bounded by the capacity of an identity channel of dimension equal to the number of scatterers. Because this bound is not very tight, we also determine an estimate of the capacity as the number of transmit/receive elements tends to infinity which is asymptotically accurate

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks
    • …
    corecore