1,278 research outputs found

    Design of a tunable multi-band differential LC VCO using 0.35 mu m SiGe BiCMOS technology for multi-standard wireless communication systems

    Get PDF
    In this paper, an integrated 2.2-5.7GHz multi-band differential LC VCO for multi-standard wireless communication systems was designed utilizing 0.35 mu m SiGe BiCMOS technology. The topology, which combines the switching inductors and capacitors together in the same circuit, is a novel approach for wideband VCOs. Based on the post-layout simulation results, the VCO can be tuned using a DC voltage of 0 to 3.3 V for 5 different frequency bands (2.27-2.51 GHz, 2.48-2.78 GHz, 3.22-3.53 GHz, 3.48-3.91 GHz and 4.528-5.7 GHz) with a maximum bandwidth of 1.36 GHz and a minimum bandwidth of 300 MHz. The designed and simulated VCO can generate a differential output power between 0.992 and -6.087 dBm with an average power consumption of 44.21 mW including the buffers. The average second and third harmonics level were obtained as -37.21 and -47.6 dBm, respectively. The phase noise between -110.45 and -122.5 dBc/Hz, that was simulated at 1 MHz offset, can be obtained through the frequency of interest. Additionally, the figure of merit (FOM), that includes all important parameters such as the phase noise, the power consumption and the ratio of the operating frequency to the offset frequency, is between -176.48 and -181.16 and comparable or better than the ones with the other current VCOs. The main advantage of this study in comparison with the other VCOs, is covering 5 frequency bands starting from 2.27 up to 5.76 GHz without FOM and area abandonment. Output power of the fundamental frequency changes between -6.087 and 0.992 dBm, depending on the bias conditions (operating bands). Based on the post-layout simulation results, the core VCO circuit draws a current between 2.4-6.3 mA and between 11.4 and 15.3 mA with the buffer circuit from 3.3 V supply. The circuit occupies an area of 1.477 mm(2) on Si substrate, including DC, digital and RF pads

    Low Noise Amplifier using Darlington Pair At 90nm Technology

    Get PDF
    The demand of low noise amplifier (LNA) has been rising in today’s communication system. LNA is the basic building circuit of the receiver section satellite. The design concept demonstrates the design trade off with NF, gain, power consumption. This paper reports on with analysis of wideband LNA. This paper shows the schematic of LNA by using Darlington pair amplifier. This LNA has been fabricated on 90nm CMOS process. This paper is focused on to make comparison of three stage and single stage LNA. Here, the phase mismatch between these patameters is quantitavely analyzed to study the effect on gain and noise figure (NF). In this paper, single stage LNA has shown the 23 dB measured gain, while the three stages LNA has demonstrated 29 dB measured gain. Here, LNA designed using darlington pair shows low NF of 3.3-4.8 dB, which comparable to other reported single stage LNA designs and appreciably low compared to the three stages LNA. Hence, findings from this paper suggest the use of single stage LNA designed using Darlington pair in transceiver satellite applications

    Design of CMOS UWB LNA

    Get PDF

    Wideband integrated circuits for optical communication systems

    Get PDF
    The exponential growth of internet traffic drives datacenters to constantly improvetheir capacity. Several research and industrial organizations are aiming towardsTbps Ethernet and beyond, which brings new challenges to the field of high-speedbroadband electronic circuit design. With datacenters rapidly becoming significantenergy consumers on the global scale, the energy efficiency of the optical interconnecttransceivers takes a primary role in the development of novel systems. Furthermore,wideband optical links are finding application inside very high throughput satellite(V/HTS) payloads used in the ever-expanding cloud of telecommunication satellites,enabled by the maturity of the existing fiber based optical links and the hightechnology readiness level of radiation hardened integrated circuit processes. Thereare several additional challenges unique in the design of a wideband optical system.The overall system noise must be optimized for the specific application, modulationscheme, PD and laser characteristics. Most state-of-the-art wideband circuits are builton high-end semiconductor SiGe and InP technologies. However, each technologydemands specific design decisions to be made in order to get low noise, high energyefficiency and adequate bandwidth. In order to overcome the frequency limitationsof the optoelectronic components, bandwidth enhancement and channel equalizationtechniques are used. In this work various blocks of optical communication systems aredesigned attempting to tackle some of the aforementioned challenges. Two TIA front-end topologies with 133 GHz bandwidth, a CB and a CE with shunt-shunt feedback,are designed and measured, utilizing a state-of-the-art 130 nm InP DHBT technology.A modular equalizer block built in 130 nm SiGe HBT technology is presented. Threeultra-wideband traveling wave amplifiers, a 4-cell, a single cell and a matrix single-stage, are designed in a 250 nm InP DHBT process to test the limits of distributedamplification. A differential VCSEL driver circuit is designed and integrated in a4x 28 Gbps transceiver system for intra-satellite optical communications based in arad-hard 130nm SiGe process

    A Novel High Linearity and Low Power Folded CMOS LNA for UWB Receivers

    Get PDF
    © 2017 World Scientific Publishing Company. Electronic version of an article published as Journal of Circuits, Systems and Computers, Vol. 27, No. 03, 1850047, https://doi.org/10.1142/S0218126618500470.This paper presents a high linearity and low power Low-Noise Amplifier (LNA) for Ultra-Wideband (UWB) receivers based on CHRT 0.18μm CMOS technology. In this work, the folded topology is adopted in order to reduce the supply voltage and power consumption. Moreover, a band-pass LC filter is embedded in the folded-cascode circuit to extend bandwidth. The transconductance nonlinearity has a great impact on the whole LNA linearity performance under a low supply voltage. A post-distortion (PD) technique employing an auxiliary transistor is applied in the transconductance stage to improve the linearity. The post-layout simulation results indicate that the proposed LNA achieves a maximum power gain of 12.8dB. The input and output reflection coefficients both are lower than -10.0dB over 2.5~11.5GHz. The input third-order intercept point (IIP3) is 5.6dBm at 8GHz and the noise figure (NF) is lower than 4.0dB. The LNA consumes 5.4mW power under a 1V supply voltage.Peer reviewe

    A Scalable 6-to-18 GHz Concurrent Dual-Band Quad-Beam Phased-Array Receiver in CMOS

    Get PDF
    This paper reports a 6-to-18 GHz integrated phased- array receiver implemented in 130-nm CMOS. The receiver is easily scalable to build a very large-scale phased-array system. It concurrently forms four independent beams at two different frequencies from 6 to 18 GHz. The nominal conversion gain of the receiver ranges from 16 to 24 dB over the entire band while the worst-case cross-band and cross-polarization rejections are achieved 48 dB and 63 dB, respectively. Phase shifting is performed in the LO path by a digital phase rotator with the worst-case RMS phase error and amplitude variation of 0.5° and 0.4 dB, respectively, over the entire band. A four-element phased-array receiver system is implemented based on four receiver chips. The measured array patterns agree well with the theoretical ones with a peak-to-null ratio of over 21.5 dB

    The BLIXER, a Wideband Balun-LNA-I/Q-Mixer Topology

    Get PDF
    This paper proposes to merge an I/Q current-commutating mixer with a noise-canceling balun-LNA. To realize a high bandwidth, the real part of the impedance of all RF nodes is kept low, and the voltage gain is not created at RF but in baseband where capacitive loading is no problem. Thus a high RF bandwidth is achieved without using inductors for bandwidth extension. By using an I/Q mixer with 25% duty-cycle LO waveform the output IF currents have also 25% duty-cycle, causing 2 times smaller DC-voltage drop after IF filtering. This allows for a 2 times increase in the impedance level of the IF filter, rendering more voltage gain for the same supply headroom. The implemented balun-LNA-I/Q-mixer topology achieves > 18 dB conversion gain, a flat noise figure < 5.5 dB from 500 MHz to 7 GHz, IIP2 = +20 dBm and IIP3 = -3 dBm. The core circuit consumes only 16 mW from a 1.2 V supply voltage and occupies less than 0.01 mm2 in 65 nm CMOS

    Timed array antenna system : application to wideband and ultra-wideband beamforming receivers

    Get PDF
    Antenna array systems have a broad range of applications in radio frequency (RF) and ultra-wideband (UWB) communications to receive/transmit electromagnetic waves from/to the sky. They can enhance the amplitude of the input signals, steer beams electronically, and reject interferences thanks to beamforming technique. In an antenna array beamforming system, delay cells with the tunable capability of delay amount compensate the relative delay of signals received by antennas. In fact, each antenna almost acts individually depending upon time delaying effects on the input signals. As a result, the delay cells are the basic elements of the beamforming systems. For this purpose, novel active true time delay (TTD) cells suitable for RF antenna arrays have been presented in this thesis. These active delay cells are based on 1st- and 2nd-order all-pass filters (APFs) and achieve quite a flat gain and delay within up to 10-GHz frequency range. Various techniques such as phase linearity and delay tunability have been accomplished to improve the design and performance. The 1st-order APF has been designed for a frequency range of 5 GHz, showing desirable frequency responses and linearity which is comparable with the state-of-the-art. This 1st-order APF is able to convert into a 2nd-order APF via adding a grounded capacitor. A compact 2nd-order APF using an active inductor has been also designed and simulated for frequencies up to 10 GHz. The active inductor has been utilized to tune the amount of delay and to reduce the on-chip size of the filter. In order to validate the performance of the delay cells, two UWB four-channel timed array beamforming receivers realized by the active TTD cells have been proposed. Each antenna channel exploits digitally controllable gain and delay on the input signal and demonstrates desirable gain and delay resolutions. The beamforming receivers have been designed for different UWB applications depending on their operating frequency ranges (that is, 3-5 and 3.1-10.6 GHz), and thus they have different system requirements and specifications. All the circuits and topologies presented in this dissertation have been designed in standard 180-nm CMOS technologies, featuring a unity gain frequency ( ft) up to 60 GHz.Els sistemes matricials d’antenes tenen una àmplia gamma d’aplicacions en radiofreqüència (RF) i comunicacions de banda ultraampla (UWB) per rebre i transmetre ones electromagnètics. Poden millorar l’amplitud dels senyals d’entrada rebuts, dirigir els feixos electrònicament i rebutjar les interferències gràcies a la tècnica de formació de feixos (beamforming). En un sistema beamforming de matriu d’antenes, les cèl·lules de retard amb capacitat ajustable del retard, compensen aquest retard relatiu dels senyals rebuts per les diferents antenes. De fet, cada antena gairebé actua individualment depenent dels efectes de retard de temps sobre el senyals d’entrada. Com a resultat, les cel·les de retard són els elements bàsics en el disseny dels actuals sistemes beamforming. Amb aquest propòsit, en aquesta tesi es presenten noves cèl·lules actives de retard en temps real (TTD, true time delay) adequades per a matrius d’antenes de RF. Aquestes cèl·lules de retard actives es basen en cèl·lules de primer i segon ordre passa-tot (APF), i aconsegueixen un guany i un retard força plans, en el rang de freqüència de fins a 10 GHz. Diverses tècniques com ara la linealitat de fase i la sintonització del retard s’han aconseguit per millorar el disseny i el rendiment. La cèl·lula APF de primer ordre s’ha dissenyat per a un rang de freqüències de fins a 5 GHz, mostrant unes respostes freqüencials i linealitat que són comparables amb l’estat de l’art actual. Aquestes cèl·lules APF de primer ordre es poden convertir en un APF de segon ordre afegint un condensador més connectat a massa. També s’ha dissenyat un APF compacte de segon ordre que utilitza una emulació d’inductor actiu per a freqüències de treball de fins a 10 GHz. S’ha utilitzat l'inductor actiu per ajustar la quantitat de retard introduït i reduir les dimensions del filtre al xip. Per validar les prestacions de les cel·les de retard propostes, s’han proposat dos receptors beamforming basats en matrius d’antenes de 4 canals, realitzats por cèl·lules TTD actives. Cada canal d’antena aprofita el guany i el retard controlables digitalment aplicats al senyal d’entrada, i demostra resolucions de guany i retard desitjables. Els receptors beamforming s’han dissenyat per a diferents aplicacions UWB segons els seus rangs de freqüències de funcionament (en aquest cas, 3-5 i 3,1-10,6 GHz) i, per tant, tenen diferents requisits i especificacions de disseny del sistema. Tots els circuits i topologies presentats en aquesta tesi s’han dissenyat en tecnologies CMOS estàndards de 180 nm, amb una freqüència de guany unitari (ft) de fins a 60 GHz.Postprint (published version

    InP DHBT Single-Stage and Multiplicative Distributed Amplifiers for Ultra-Wideband Amplification

    Get PDF
    This paper highlights the gain-bandwidth merit of the single stage distributed amplifier (SSDA) and its derivative multiplicative amplifier topologies (i.e. the cascaded SSDA (C-SSDA) and the matrix SSDA (M-SSDA)), for ultra-wideband amplification. Two new monolithic microwave integrated circuit (MMIC) amplifiers are presented: an SSDA MMIC with 7.1dB average gain and 200GHz bandwidth; and the world's first M-SSDA, which has a 12dB average gain and 170GHz bandwidth. Both amplifiers are based on an Indium Phosphide DHBT process with 250nm emitter width. To the authors best knowledge, the SSDA has the widest bandwidth for any single stage amplifier reported to date. Furthermore, the three tier M-SSDA has the highest bandwidth and gain-bandwidth product for any matrix amplifier reported to date

    Bandwidth Extension for Transimpedance Amplifiers

    Get PDF
    • …
    corecore