27 research outputs found

    Radio-Communications Architectures

    Get PDF
    Wireless communications, i.e. radio-communications, are widely used for our different daily needs. Examples are numerous and standard names like BLUETOOTH, WiFI, WiMAX, UMTS, GSM and, more recently, LTE are well-known [Baudoin et al. 2007]. General applications in the RFID or UWB contexts are the subject of many papers. This chapter presents radio-frequency (RF) communication systems architecture for mobile, wireless local area networks (WLAN) and connectivity terminals. An important aspect of today's applications is the data rate increase, especially in connectivity standards like WiFI and WiMAX, because the user demands high Quality of Service (QoS). To increase the data rate we tend to use wideband or multi-standard architecture. The concept of software radio includes a self-reconfigurable radio link and is described here on its RF aspects. The term multi-radio is preferred. This chapter focuses on the transmitter, yet some considerations about the receiver are given. An important aspect of the architecture is that a transceiver is built with respect to the radio-communications signals. We classify them in section 2 by differentiating Continuous Wave (CW) and Impulse Radio (IR) systems. Section 3 is the technical background one has to consider for actual applications. Section 4 summarizes state-of-the-art high data rate architectures and the latest research in multi-radio systems. In section 5, IR architectures for Ultra Wide Band (UWB) systems complete this overview; we will also underline the coexistence and compatibility challenges between CW and IR systems

    A fast engineering approach to high efficiency power amplifier linearization for avionics applications

    Get PDF
    This PhD thesis provides a fast engineering approach to the design of digital predistortion (DPD) linearizers from several perspectives: i) enhancing the off-line training performance of open-loop DPD, ii) providing robustness and reducing the computational complexity of the parameters identification subsystem and, iii) importing machine learning techniques to favor the automatic tuning of power amplifiers (PAs) and DPD linearizers with several free-parameters to maximize power efficiency while meeting the linearity specifications. One of the essential parts of unmanned aerial vehicles (UAV) is the avionics, being the radio control one of the earliest avionics present in the UAV. Unlike the control signal, for transferring user data (such as images, video, etc.) real-time from the drone to the ground station, large transmission rates are required. The PA is a key element in the transmitter chain to guarantee the data transmission (video, photo, etc.) over a long range from the ground station. The more linear output power, the better the coverage or alternatively, with the same coverage, better SNR allows the use of high-order modulation schemes and thus higher transmission rates are achieved. In the context of UAV wireless communications, the power consumption, size and weight of the payload is of significant importance. Therefore, the PA design has to take into account the compromise among bandwidth, output power, linearity and power efficiency (very critical in battery-supplied devices). The PA can be designed to maximize its power efficiency or its linearity, but not both. Therefore, a way to deal with this inherent trade-off is to design high efficient amplification topologies and let the PA linearizers take care of the linearity requirements. Among the linearizers, DPD linearization is the preferred solution to both academia and industry, for its high flexibility and linearization performance. In order to save as many computational and power resources as possible, the implementation of an open-loop DPD results a very attractive solution for UAV applications. This thesis contributes to the PA linearization, especially on off-line training for open-loop DPD, by presenting two different methods for reducing the design and operating costs of an open-loop DPD, based on the analysis of the DPD function. The first method focuses on the input domain analysis, proposing mesh-selecting (MeS) methods to accurately select the proper samples for a computationally efficient DPD parameter estimation. Focusing in the MeS method with better performance, the memory I-Q MeS method is combined with feature extraction dimensionality reduction technique to allow a computational complexity reduction in the identification subsystem by a factor of 65, in comparison to using the classical QR-LS solver and consecutive samples selection. In addition, the memory I-Q MeS method has been proved to be of crucial interest when training artificial neural networks (ANN) for DPD purposes, by significantly reducing the ANN training time. The second method involves the use of machine learning techniques in the DPD design procedure to enlarge the capacity of the DPD algorithm when considering a high number of free parameters to tune. On the one hand, the adaLIPO global optimization algorithm is used to find the best parameter configuration of a generalized memory polynomial behavioral model for DPD. On the other hand, a methodology to conduct a global optimization search is proposed to find the optimum values of a set of key circuit and system level parameters, that properly combined with DPD linearization and crest factor reduction techniques, can exploit at best dual-input PAs in terms of maximizing power efficiency along wide bandwidths while being compliant with the linearity specifications. The advantages of these proposed techniques have been validated through experimental tests and the obtained results are analyzed and discussed along this thesis.Aquesta tesi doctoral proporciona unes pautes per al disseny de linealitzadors basats en predistorsió digital (DPD) des de diverses perspectives: i) millorar el rendiment del DPD en llaç obert, ii) proporcionar robustesa i reduir la complexitat computacional del subsistema d'identificació de paràmetres i, iii) incorporació de tècniques d'aprenentatge automàtic per afavorir l'auto-ajustament d'amplificadors de potència (PAs) i linealitzadors DPD amb diversos graus de llibertat per poder maximitzar l’eficiència energètica i al mateix temps acomplir amb les especificacions de linealitat. Una de les parts essencials dels vehicles aeris no tripulats (UAV) _es l’aviònica, sent el radiocontrol un dels primers sistemes presents als UAV. Per transferir dades d'usuari (com ara imatges, vídeo, etc.) en temps real des del dron a l’estació terrestre, es requereixen taxes de transmissió grans. El PA _es un element clau de la cadena del transmissor per poder garantir la transmissió de dades a grans distàncies de l’estació terrestre. A major potència de sortida, més cobertura o, alternativament, amb la mateixa cobertura, millor relació senyal-soroll (SNR) la qual cosa permet l’ús d'esquemes de modulació d'ordres superiors i, per tant, aconseguir velocitats de transmissió més altes. En el context de les comunicacions sense fils en UAVs, el consum de potència, la mida i el pes de la càrrega útil són de vital importància. Per tant, el disseny del PA ha de tenir en compte el compromís entre ample de banda, potència de sortida, linealitat i eficiència energètica (molt crític en dispositius alimentats amb bateries). El PA es pot dissenyar per maximitzar la seva eficiència energètica o la seva linealitat, però no totes dues. Per tant, per afrontar aquest compromís s'utilitzen topologies amplificadores d'alta eficiència i es deixa que el linealitzador s'encarregui de garantir els nivells necessaris de linealitat. Entre els linealitzadors, la linealització DPD és la solució preferida tant per al món acadèmic com per a la indústria, per la seva alta flexibilitat i rendiment. Per tal d'estalviar tant recursos computacionals com consum de potència, la implementació d'un DPD en lla_c obert resulta una solució molt atractiva per a les aplicacions UAV. Aquesta tesi contribueix a la linealització del PA, especialment a l'entrenament fora de línia de linealitzadors DPD en llaç obert, presentant dos mètodes diferents per reduir el cost computacional i augmentar la fiabilitat dels DPDs en llaç obert. El primer mètode se centra en l’anàlisi de l’estadística del senyal d'entrada, proposant mètodes de selecció de malla (MeS) per seleccionar les mostres més significatives per a una estimació computacionalment eficient dels paràmetres del DPD. El mètode proposat IQ MeS amb memòria es pot combinar amb tècniques de reducció del model del DPD i d'aquesta manera poder aconseguir una reducció de la complexitat computacional en el subsistema d’identificació per un factor de 65, en comparació amb l’ús de l'algoritme clàssic QR-LS i selecció de mostres d'entrenament consecutives. El segon mètode consisteix en l’ús de tècniques d'aprenentatge automàtic pel disseny del DPD quan es considera un gran nombre de graus de llibertat (paràmetres) per sintonitzar. D'una banda, l'algorisme d’optimització global adaLIPO s'utilitza per trobar la millor configuració de paràmetres d'un model polinomial amb memòria generalitzat per a DPD. D'altra banda, es proposa una estratègia per l’optimització global d'un conjunt de paràmetres clau per al disseny a nivell de circuit i sistema, que combinats amb linealització DPD i les tècniques de reducció del factor de cresta, poden maximitzar l’eficiència de PAs d'entrada dual de gran ample de banda, alhora que compleixen les especificacions de linealitat. Els avantatges d'aquestes tècniques proposades s'han validat mitjançant proves experimentals i els resultats obtinguts s'analitzen i es discuteixen al llarg d'aquesta tesi

    Resource allocation and feedback in wireless multiuser networks

    Get PDF
    This thesis focuses on the design of algorithms for resource allocation and feedback in wireless multiuser and heterogeneous networks. In particular, three key design challenges expected to have a major impact on future wireless networks are considered: cross-layer scheduling; structured quantization codebook design for MU-MIMO networks with limited feedback; and resource allocation to provide physical layer security. The first design challenge is cross-layer scheduling, where policies are proposed for two network architectures: user scheduling in single-cell multiuser networks aided by a relay; and base station (BS) scheduling in CoMP. These scheduling policies are then analyzed to guarantee satisfaction of three performance metrics: SEP; packet delay; and packet loss probability (PLP) due to buffer overflow. The concept of the τ-achievable PLP region is also introduced to explicitly describe the tradeoff in PLP between different users. The second design challenge is structured quantization codebook design in wireless networks with limited feedback, for both MU-MIMO and CoMP. In the MU-MIMO network, two codebook constructions are proposed, which are based on structured transformations of a base codebook. In the CoMP network, a low-complexity construction is proposed to solve the problem of variable codebook dimensions due to changes in the number of coordinated BSs. The proposed construction is shown to have comparable performance with the standard approach based on a random search, while only requiring linear instead of exponential complexity. The final design challenge is resource allocation for physical layer security in MU-MIMO. To guarantee physical layer security, the achievable secrecy sum-rate is explicitly derived for the regularized channel inversion (RCI) precoder. To improve performance, power allocation and precoder design are jointly optimized using a new algorithm based on convex optimization techniques

    Physical Layer Modeling and Optimization of Silicon Photonic Interconnection Networks

    Get PDF
    The progressive blooming of silicon photonics technology (SiP) has indicated that optical interconnects may substitute the electrical wires for data movement over short distances in the future. Silicon Photonics platform has been the subject of intensive research for more than a decade now and its prospects continue to emerge as it enjoys the maturity of CMOS manufacturing industry. SiP foundries all over the world and particularly in the US (AIM Photonics) have been developing reliable photonic design kits (PDKs) that include fundamental SiP building blocks such as wavelength selective modulators and tunable filters. Microring resonators (MRR) are hailed as the most compact devices that can perform both modulation and demodulation in a wavelength division multiplexed (WDM) transceiver design. Although the use of WDM can reduce the number of fibers carrying data, it also makes the design of transceivers challenging. It is probably acceptable to achieve compactness at the expense of somewhat higher transceiver cost and power consumption. Nevertheless, these two metrics should remain close to their roadmap values for Datacom applications. An increase of an order of magnitude is clearly not acceptable. For example costs relative to bandwidth for an optical link in a data center interconnect will have to decrease from the current 5/Gbpsdownto<5/Gbps down to <1/Gbps. Additionally, the transceiver itself must remain compact. The optical properties of SiP devices are subject to various design considerations, operation conditions, and optimization procedures. In this thesis, the general goal is to develop mathematical models that can accurately describe the thermo-optical and electro-optical behavior of individual SiP devices and then use these models to perform optimization on the parameters of such devices to maximize the capabilities of photonic links or photonic switch fabrics for datacom applications. In Chapter 1, Introduction, we first provide an overview of the current state of the optical transceivers for data centers and datacom applications. Four main categories for optical interfaces (Pluggable transceivers, On-board optics, Co-packaged optics, monolithic integration) are briefly discussed. The structure of a silicon photonic link is also briefly introduced. Then the direction is shifted towards optical switching technologies where various technologies such as free space MEMS, liquid crystal on silicon (LCOS), SOA-based switches, and silicon-based switches are explored. In Chapter 2, Silicon Photonic Waveguides, we present an extensive study of the silicon-on-insulator (SOI) waveguides that are the basic building blocks of all of the SiP devices. The dispersion of Si and SiO2 is modeled with Sellmiere equation for the wavelength range 1500–1600 nm and then is used to calculate the TE and TM modes of a 2D slab waveguide. There are two reasons that 2D waveguides are studied: first, the modes of these waveguides have closed form solutions and the modes of 3D waveguides can be approximated from 2D waveguides based on the effective index method. Second, when the coupling of waveguides is studied and the concept of curvature function of coupling is developed, the coupled modes of 2D waveguides are used to show that this approach has some inherent small error due to the discretization of the nonuniform coupling. This chapter finishes by describing the coefficients of the sensitivity of optical modes of the waveguides to the geometrical and material parameters. Perturbation theory is briefly presented as a way to analytically examine the impact of small perturbations on the effective index of the modes. In Chapter 3, Compact Modeling Approach, the concept of scattering matrix of a multi-port silicon photonic device is presented. The elements of the S-matrix are complex numbers that relate the amplitude and phase relationships of the optical models in the input and output ports. Based on the scattering matrix modeling of silicon photonics devices, two methods of solving photonic circuits are developed: the first one is based on the iteration for linear circuits. The second approach is based on the construction of an equivalent signal flow graph (SFG) for the circuit. We show that the SFG approach is very efficient for circuits involving microring resonator structures. Not only SFG can provide the solution for the transmission, it also provides the signal paths and the closed-form solution based on the Mason’s graph formula. We also show how the SFG method can be utilized to formulate the backscattering effects inside a ring resonator. In Chapter 4, Scalability of Silicon Photonic Switch Fabrics, we develop the models for electro-optic Mach-Zehnder switch elements (2×2). For the electro-optic properties, the empirical Soref’s equations are used to characterize how the loss and index of silicon changes when the charge carrier density is changed. We then use our photonic circuit solver based on the iteration method to find accurate result of light propagation in large-scale switch topologies (e.g. 4×4, and 8×8). The concept of advanced path mapping based on physical layer evaluation of the switch fabric is introduced and used to develop the optimum routing tables for 4×4 and 8×8 Benes switch topologies. In Chapter 5, Design space of Microring Resonators, we introduce the concept of curvature function of coupling to mathematically characterize the coupling coefficient of a ring resonator to a waveguide as a function of the geometrical parameters (ring radius, coupling gap, width and height of waveguides) and the wavelength. Extensive 2D and 3D FDTD simulations are carried out to validate our modeling approach. Experimental demonstrations are also used to not only further validate our modeling of coupling, but also to extract an empirical power-law model for the bending loss of the ring resonators as a function the radius. By combining these models, we for the first time present a full characterization of the design space of microring resonators. Moreover, the value of this discussion will be further apparent when the scalability of a silicon photonic link is studied. We will show that the FSR of the rings determines the optical bandwidth but it also impacts the properties of the ring resonators. In Chapter 6, Thermo-optic Efficiency of Microheaters, we develop analytical models for the thermo-optic properties of SiP waveguides. For the thermo-optic properties, the concept of thermal impulse response is mathematically developed for integrated micro-heaters. The thermal impulse response is a key function that determines the tradeoff between heating efficiency and heating speed (thermal bandwidth), as well as allows us to predict the pulse-width-modulation (PWM) optical response of the heater-waveguide system. One of the motivations behind this study was to find the highest possible efficiency for thermal tuning of microring resonators to use it in the evaluation of the energy consumption of a photonic link. The results indicate 2 nm/mW which is in agreement with the trends that we see in the literature. In Chapter 7, Crosstalk Penalty, we theoretically and experimentally investigate the optical crosstalk effects in microring-based silicon photonic interconnects. Both inter-channel crosstalk and intra-channel crosstalk are investigated and approximate equations are developed for their corresponding power penalties. Inclusion of the inter-channel crosstalk is an important part of our final analysis of a silicon photonic link. In Chapter 8, Scalability of Silicon Photonic Links, we present the analysis of a WDM silicon photonics point-to-point link based on microring modulators and microring wavelength filters. Our approach is based on the power penalty analysis of non-return-to-zero (NRZ) signals and Gaussian noise statistics. All the necessary equations for the optical power penalty calculations are presented for microring modulators and filters. The first part of the analysis is based on various ideal assumptions which lead to a maximum capacity of 2.1 Tb/s for the link. The second part of the analysis is carried out with more realistic assumptions on the photonic elements in the link, culminating in a maximum throughput of 800 Gb/s. We also provide estimations of the energy/bit metric of such links based on the optimized models of electronic circuits in 65 nm CMOS technology

    Integrated Microwave Photonic Processors using Waveguide Mesh Cores

    Full text link
    Integrated microwave photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint and cost. Application Specific Photonic Integrated Circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long-development times and costly implementations. A different approach inspired by electronic Field Programmable Gate Arrays is the programmable Microwave Photonic processor, where a common hardware implemented by the combination of microwave, photonic and electronic subsystems, realizes different functionalities through programming. Here, we propose the first-ever generic-purpose Microwave Photonic processor concept and architecture. This versatile processor requires a powerful end-to-end field-based analytical model to optimally configure all their subsystems as well as to evaluate their performance in terms of the radiofrequency gain, noise and dynamic range. Therefore, we develop a generic model for integrated Microwave Photonics systems. The key element of the processor is the reconfigurable optical core. It requires high flexibility and versatility to enable reconfigurable interconnections between subsystems as well as the synthesis of photonic integrated circuits. For this element, we focus on a 2-dimensional photonic waveguide mesh based on the interconnection of tunable couplers. Within the framework of this Thesis, we have proposed two novel interconnection schemes, aiming for a mesh design with a high level of versatility. Focusing on the hexagonal waveguide mesh, we explore the synthesis of a high variety of photonic integrated circuits and particular Microwave Photonics applications that can potentially be performed on a single hardware. In addition, we report the first-ever demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate a world-record number of functionalities on a single photonic integrated circuit enabling over 30 different functionalities from the 100 that could be potentially obtained with a simple seven hexagonal cell structure. The resulting device can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks as well as quantum information systems. Our work is an important step towards this paradigm and sets the base for a new era of generic-purpose photonic integrated systems.Los dispositivos integrados de fotónica de microondas ofrecen soluciones optimizadas para los sistemas de información y comunicación. Generalmente, están compuestos por diferentes arquitecturas en las que subsistemas ópticos y electrónicos se integran para optimizar las prestaciones, el consumo, el tamaño y el coste del dispositivo final. Hasta ahora, los circuitos/chips de propósito específico se han diseñado para proporcionar una funcionalidad concreta, requiriendo así un número considerable de iteraciones entre las etapas de diseño, fabricación y medida, que origina tiempos de desarrollo largos y costes demasiado elevados. Una alternativa, inspirada por las FPGA (del inglés Field Programmable Gate Array), es el procesador fotónico programable. Este dispositivo combina la integración de subsistemas de microondas, ópticos y electrónicos para realizar, mediante la programación de los mismos y sus interconexiones, diferentes funcionalidades. En este trabajo, proponemos por primera vez el concepto del procesador de propósito general, así como su arquitectura. Además, con el fin de diseñar, optimizar y evaluar las prestaciones básicas del dispositivo, hemos desarrollado un modelo analítico extremo a extremo basado en las componentes del campo electromagnético. El modelo desarrollado proporciona como resultado la ganancia, el ruido y el rango dinámico global para distintas configuraciones de modulación y detección, en función de los subsistemas y su configuración. El elemento principal del procesador es su núcleo óptico reconfigurable. Éste requiere un alto grado de flexibilidad y versatilidad para reconfigurar las interconexiones entre los distintos subsistemas y para sintetizar los circuitos para el procesado óptico. Para este subsistema, proponemos el diseño de guías de onda reconfigurables para la creación de mallados bidimensionales. En el marco de esta tesis, hemos propuesto dos nuevos nodos de interconexión óptica para mallas reconfigurables, con el objetivo de obtener un mayor grado de versatilidad. Una vez escogida la malla hexagonal para el núcleo del procesador, hemos analizado la configuración de un gran número de circuitos fotónicos integrados y de funcionalidades de fotónica de microondas. El trabajo se ha completado con la demonstración de la primera malla reconfigurable integrada en un chip de silicio, demostrando además la síntesis de 30 de las 100 funcionalidades que potencialmente se pueden obtener con la malla diseñada compuesta de 7 celdas hexagonales. Este hecho supone un record frente a los sistemas de propósito específico. El sistema puede aplicarse en diferentes campos como las comunicaciones, los sensores químicos y biomédicos, el procesado de señales, la gestión y procesamiento de redes y los sistemas de información cuánticos. El conjunto del trabajo realizado representa un paso importante en la evolución de este paradigma, y sienta las bases para una nueva era de dispositivos fotónicos de propósito general.Els dispositius integrats de Fotònica de Microones oferixen solucions optimitzades per als sistemes d'informació i comunicació. Generalment, estan compostos per diferents arquitectures en què subsistemes òptics i electrònics s'integren per a optimitzar les prestacions, el consum, la grandària i el cost del dispositiu final. Fins ara, els circuits/xips de propòsit específic s'han dissenyat per a proporcionar una funcionalitat concreta, requerint així un nombre considerable d'iteracions entre les etapes de disseny, fabricació i mesura, que origina temps de desenrotllament llargs i costos massa elevats. Una alternativa, inspirada per les FPGA (de l'anglés Field Programmable Gate Array), és el processador fotònic programable. Este dispositiu combina la integració de subsistemes de microones, òptics i electrònics per a realitzar, per mitjà de la programació dels mateixos i les seues interconnexions, diferents funcionalitats. En este treball proposem per primera vegada el concepte del processador de propòsit general, així com la seua arquitectura. A més, a fi de dissenyar, optimitzar i avaluar les prestacions bàsiques del dispositiu, hem desenrotllat un model analític extrem a extrem basat en els components del camp electromagnètic. El model desenrotllat proporciona com resultat el guany, el soroll i el rang dinàmic global per a distintes configuracions de modulació i detecció, en funció dels subsistemes i la seua configuració. L'element principal del processador és el seu nucli òptic reconfigurable. Este requerix un alt grau de flexibilitat i versatilitat per a reconfigurar les interconnexions entre els distints subsistemes i per a sintetitzar els circuits per al processat òptic. Per a este subsistema, proposem el disseny de guies d'onda reconfigurables per a la creació de mallats bidimensionals. En el marc d'esta tesi, hem proposat dos nous nodes d'interconnexió òptica per a malles reconfigurables, amb l'objectiu d'obtindre un major grau de versatilitat. Una vegada triada la malla hexagonal per al nucli del processador, hem analitzat la configuració d'un gran nombre de circuits fotónicos integrats i de funcionalitats de fotónica de microones. El treball s'ha completat amb la demostració de la primera malla reconfigurable integrada en un xip de silici, demostrant a més la síntesi de 30 de les 100 funcionalitats que potencialment es poden obtindre amb la malla dissenyada composta de 7 cèl·lules hexagonals. Este fet suposa un rècord enfront dels sistemes de propòsit específic. El sistema pot aplicarse en diferents camps com les comunicacions, els sensors químics i biomèdics, el processat de senyals, la gestió i processament de xarxes i els sistemes d'informació quàntics. El conjunt del treball realitzat representa un pas important en l'evolució d'este paradigma, i assenta les bases per a una nova era de dispositius fotónicos de propòsit general.Pérez López, D. (2017). Integrated Microwave Photonic Processors using Waveguide Mesh Cores [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/91232TESI
    corecore