3,640 research outputs found

    Nanoantennas for visible and infrared radiation

    Full text link
    Nanoantennas for visible and infrared radiation can strongly enhance the interaction of light with nanoscale matter by their ability to efficiently link propagating and spatially localized optical fields. This ability unlocks an enormous potential for applications ranging from nanoscale optical microscopy and spectroscopy over solar energy conversion, integrated optical nanocircuitry, opto-electronics and density-ofstates engineering to ultra-sensing as well as enhancement of optical nonlinearities. Here we review the current understanding of optical antennas based on the background of both well-developed radiowave antenna engineering and the emerging field of plasmonics. In particular, we address the plasmonic behavior that emerges due to the very high optical frequencies involved and the limitations in the choice of antenna materials and geometrical parameters imposed by nanofabrication. Finally, we give a brief account of the current status of the field and the major established and emerging lines of investigation in this vivid area of research.Comment: Review article with 76 pages, 21 figure

    Gravitational Wave Detection with High Frequency Phonon Trapping Acoustic Cavities

    Full text link
    There are a number of theoretical predictions for astrophysical and cosmological objects, which emit high frequency (106−10910^6-10^9~Hz) Gravitation Waves (GW) or contribute somehow to the stochastic high frequency GW background. Here we propose a new sensitive detector in this frequency band, which is based on existing cryogenic ultra-high quality factor quartz Bulk Acoustic Wave cavity technology, coupled to near-quantum-limited SQUID amplifiers at 2020~mK. We show that spectral strain sensitivities reaching 10−2210^{-22} per Hz\sqrt{\text{Hz}} per mode is possible, which in principle can cover the frequency range with multiple (>100>100) modes with quality factors varying between 106−101010^6-10^{10} allowing wide bandwidth detection. Due to its compactness and well established manufacturing process, the system is easily scalable into arrays and distributed networks that can also impact the overall sensitivity and introduce coincidence analysis to ensure no false detections.Comment: appears in Phys. Rev. D, (2014

    Electrically Small Supergain Arrays

    Full text link
    The theory, computer simulations, and experimental measurements are presented for electrically small two-element supergain arrays with near optimal endfire gains of 7 dB. We show how the difficulties of narrow tolerances, large mismatches, low radiation efficiencies, and reduced scattering of electrically small parasitic elements are overcome by using electrically small resonant antennas as the elements in both separately driven and singly driven (parasitic) two-element electrically small supergain endfire arrays. Although rapidly increasing narrow tolerances prevent the practical realization of the maximum theoretically possible endfire gain of electrically small arrays with many elements, the theory and preliminary numerical simulations indicate that near maximum supergains are also achievable in practice for electrically small arrays with three (and possibly more) resonant elements if the decreasing bandwidth with increasing number of elements can be tolerated.Comment: 10 pages, 11 figures, submitted to IEEE Transactions on Antennas and Propagation (December 2006

    Bandwidth enhancement of antennas designed by band-pass filter synthesis due to frequency pulling techniques

    Get PDF
    A novel antenna design technique is proposed, which offers bandwidth enhancement up to the limits defined by element radiation efficiency. The employed technique is referred as frequency pulling (FP) as it mimics the ‘insertion loss design methodology of band-pass filters’. This is essentially a wideband matching approach pushing the antenna efficiency to the limits set up by radiation efficiency. There are three options towards this trend: (i) first to enhance a single element bandwidth (compact element) exploiting its possibly multiple symmetrical feeding points as distinct resonator ports, (ii) frequency pulled array as to design a small antenna array (less than about 10 elements) where each element acts as a resonator and (iii) second order frequency-pulled array as to build a small array using compact elements of category (i). Similar to the band-pass filter design, all antennas or distinct-port circuits resonate at the same resonant frequency when isolated, cascading two or more of them; FP yields to multiple-overlapping successive resonances in their overall response. Although the proposed technique is general within this first effort, it is applied to simple patch antenna elements exhibiting multiple symmetrical feeding points, namely two—for rectangular, four—for square and five—for pentagonal. The third option is applied to an array of three compact 4-feeding point square elements offering triple bandwidth with respect to the already wideband single element. However, this is achieved at the expense of a significant beam squint. Thus, in general, these wideband compact elements should be used within a classical array design. Further bandwidth enhancement using FP to antenna elements with inherent multiple resonances as patches with slots or truncated edges constitutes our next task. Their inherent wider bandwidth in radiation efficiency is expected to allow multiply higher bandwidths when exploited with our FP technique

    Complete model of a spherical gravitational wave detector with capacitive transducers. Calibration and sensitivity optimization

    Get PDF
    We report the results of a detailed numerical analysis of a real resonant spherical gravitational wave antenna operating with six resonant two-mode capacitive transducers read out by superconducting quantum interference devices (SQUID) amplifiers. We derive a set of equations to describe the electro-mechanical dynamics of the detector. The model takes into account the effect of all the noise sources present in each transducer chain: the thermal noise associated with the mechanical resonators, the thermal noise from the superconducting impedance matching transformer, the back-action noise and the additive current noise of the SQUID amplifier. Asymmetries in the detector signal-to-noise ratio and bandwidth, coming from considering the transducers not as point-like objects but as sensor with physically defined geometry and dimension, are also investigated. We calculate the sensitivity for an ultracryogenic, 30 ton, 2 meter in diameter, spherical detector with optimal and non-optimal impedance matching of the electrical read-out scheme to the mechanical modes. The results of the analysis is useful not only to optimize existing smaller mass spherical detector like MiniGrail, in Leiden, but also as a technological guideline for future massive detectors. Furthermore we calculate the antenna patterns when the sphere operates with one, three and six resonators. The sky coverage for two detectors based in The Netherlands and Brasil and operating in coincidence is also estimated. Finally, we describe and numerically verify a calibration and filtering procedure useful for diagnostic and detection purposes in analogy with existing resonant bar detectors.Comment: 23 pages, 20 figures, codes of the simulations are available on request by contacting the autho
    • …
    corecore