69 research outputs found

    Performance issues in management of the Space Station Information System

    Get PDF
    The onboard segment of the Space Station Information System (SSIS), called the Data Management System (DMS), will consist of a Fiber Distributed Data Interface (FDDI) token-ring network. The performance of the DMS in scenarios involving two kinds of network management is analyzed. In the first scenario, how the transmission of routine management messages impacts performance of the DMS is examined. In the second scenario, techniques for ensuring low latency of real-time control messages in an emergency are examined

    Regulatory Lessons for Internet Traffic Management from Japan, the European Union, and the United States: Toward Equity, Neutrality and Transparency

    Get PDF
    As network neutrality has been one of the most contentious Internet public policy issues of the past decade, this article provides a comparative overview of events, policies, and legislation surrounding Internet traffic management practises (ITMPs) (e.g., network neutrality) in Japan, the European Union, the United States, and Canada. Using the frame provided by Richard Rose of “hybrid lessons”to create a policy synthesis, the paper details the telecom policy environment, Internet Service provider competition, legislative jurisdiction, remedies for ITMPs, consumer transparency, and adherence to privacy protection in each country. The analysis focuses on Canada’s first significant regulatory effort to address network neutrality, which came during the Canadian Radio-television and Telecommunications Commission 2009 process on Internet traffic management. This paper presents a brief overview of the Canadian regulatory environment and the specific questions which were the subject of the CRTC review. Employing Richard Rose’s methods for comparative public policy analysis, we offer a number of regulatory “lessons” from Japan, the European Union, and the United States based on their experiences with traffic management issues. Applying these lessons to the Canadian context, we make several specific policy recommendations, among them that competition be encouraged within the Internet service provider space, that network management practises be reasonable and limited, and that ISPs provide full disclosure of network management policies and practises

    Best effort measurement based congestion control

    Get PDF
    Abstract available: p.

    The Rising Preference to Real-Time Broadcasting Effects upon Traditional Multi-Media Broadcasting Solutions

    Get PDF
    Originally the Internet was a research-based arena but today the applications available are greatly diversified and extremely advanced. Media broadcasting on a real time basis is that which characterizes many providers business base in service, applications, soft and hardware needs. Today\u27s engineers are driven toward making provisions of new and superior applications to make the Internet stronger and more serviceable. Along with the new dimension of today\u27s Internet come new challenges. Videoconferencing and video broadcasting are mainstream entrant applications. These applications specifically those of videoconferencing and broadcasting place previously unheard of demands on the response-load of the network effecting data in terms of efficiency and effectiveness in data delivery. The new analog type delivery used today has opened the Internet up for new usefulness. This work explores the changes and the new technologies unleashed as well as observing how other advantages in IP networks still need to be realized, making determination of the roadblocks in achieving a competitive advantage in IP networks and evaluate the developments in broadcasting; determining other resources that need to be realized and identifying the chances that traditional broadcasting technology will revolutionize and catch up with IP broadcasting. Finally this work will assess what it would take to achieve the development of broadcasting technologies

    Multipoint connection management in ATM networks

    Get PDF

    Protocol Layering and Internet Policy

    Get PDF

    Protocol Layering and Internet Policy

    Get PDF
    An architectural principle known as protocol layering is widely recognized as one of the foundations of the Internet’s success. In addition, some scholars and industry participants have urged using the layers model as a central organizing principle for regulatory policy. Despite its importance as a concept, a comprehensive analysis of protocol layering and its implications for Internet policy has yet to appear in the literature. This Article attempts to correct this omission. It begins with a detailed description of the way the five-layer model developed, introducing protocol layering’s central features, such as the division of functions across layers, information hiding, peer communication, and encapsulation. It then discusses the model’s implications for whether particular functions are performed at the edge or in the core of the network, contrasts the model with the way that layering has been depicted in the legal commentary, and analyzes attempts to use layering as a basis for competition policy. Next the Article identifies certain emerging features of the Internet that are placing pressure on the layered model, including WiFi routers, network-based security, modern routing protocols, and wireless broadband. These developments illustrate how every architecture inevitably limits functionality as well as the architecture’s ability to evolve over time in response to changes in the technological and economic environment. Together these considerations support adopting a more dynamic perspective on layering and caution against using layers as a basis for a regulatory mandate for fear of cementing the existing technology into place in a way that prevents the network from innovating and evolving in response to shifts in the underlying technology and consumer demand

    Protocol Layering and Internet Policy

    Get PDF
    An architectural principle known as protocol layering is widely recognized as one of the foundations of the Internet’s success. In addition, some scholars and industry participants have urged using the layers model as a central organizing principle for regulatory policy. Despite its importance as a concept, a comprehensive analysis of protocol layering and its implications for Internet policy has yet to appear in the literature. This Article attempts to correct this omission. It begins with a detailed description of the way the five-layer model developed, introducing protocol layering’s central features, such as the division of functions across layers, information hiding, peer communication, and encapsulation. It then discusses the model’s implications for whether particular functions are performed at the edge or in the core of the network, contrasts the model with the way that layering has been depicted in the legal commentary, and analyzes attempts to use layering as a basis for competition policy. Next the Article identifies certain emerging features of the Internet that are placing pressure on the layered model, including WiFi routers, network-based security, modern routing protocols, and wireless broadband. These developments illustrate how every architecture inevitably limits functionality as well as the architecture’s ability to evolve over time in response to changes in the technological and economic environment. Together these considerations support adopting a more dynamic perspective on layering and caution against using layers as a basis for a regulatory mandate for fear of cementing the existing technology into place in a way that prevents the network from innovating and evolving in response to shifts in the underlying technology and consumer demand

    Smart PIN: performance and cost-oriented context-aware personal information network

    Get PDF
    The next generation of networks will involve interconnection of heterogeneous individual networks such as WPAN, WLAN, WMAN and Cellular network, adopting the IP as common infrastructural protocol and providing virtually always-connected network. Furthermore, there are many devices which enable easy acquisition and storage of information as pictures, movies, emails, etc. Therefore, the information overload and divergent content’s characteristics make it difficult for users to handle their data in manual way. Consequently, there is a need for personalised automatic services which would enable data exchange across heterogeneous network and devices. To support these personalised services, user centric approaches for data delivery across the heterogeneous network are also required. In this context, this thesis proposes Smart PIN - a novel performance and cost-oriented context-aware Personal Information Network. Smart PIN's architecture is detailed including its network, service and management components. Within the service component, two novel schemes for efficient delivery of context and content data are proposed: Multimedia Data Replication Scheme (MDRS) and Quality-oriented Algorithm for Multiple-source Multimedia Delivery (QAMMD). MDRS supports efficient data accessibility among distributed devices using data replication which is based on a utility function and a minimum data set. QAMMD employs a buffer underflow avoidance scheme for streaming, which achieves high multimedia quality without content adaptation to network conditions. Simulation models for MDRS and QAMMD were built which are based on various heterogeneous network scenarios. Additionally a multiple-source streaming based on QAMMS was implemented as a prototype and tested in an emulated network environment. Comparative tests show that MDRS and QAMMD perform significantly better than other approaches

    Management of Carrier Grade Intra-Domain Ethernet

    Get PDF
    Internet ei ole enää pelkkä tiedonlähde, vaan enenevässä määrin kriittisempi osa yhteiskunnan infrastruktuuria. Nykyiset Internet-palveluja tuottavat teknologiat - IPv4 osoitteistuksessa, MPLS siirtoalustana ja SDH fyysisenä välitysteknologiana - ovat alkaneet menettää valta-asemaansa samalla kun kaikille tuttu verkkoteknologia, Ethernet, on laajentunut lähiverkoista runkoverkkoihin. Maailmassa on miljoonia Ethernet-lähiverkkoja. Olisi kustannustehokaampaa toteuttaa myös näiden lähiverkkojen väliset siirtoyhteydet Ethernetillä. Halu kustannustehokkuuteen ja teknologian konsolidointiin on tuonut esille tarpeen ns. operaattorikestoisille Ethernet-palveluille. Koska Ethernetistä puuttuu määrättyjä ominaisuuksia joita ilman on mahdotonta toteuttaa siirtoverkkopalveluja, näitä operaattori-Ethernet-palveluja on tuotettu toistaiseksi olemassa olevilla tekniikoilla, kuten MPLS:llä. Tulevaisuudessa todellinen haaste on luoda operaattoritasoinen, Ethernet-pohjainen siirtoverkkoteknologia, joka kykenee tuottamaan Ethernet-palvelujen lisäksi mitä tahansa muita tietoliikennepalveluja. Tämä diplomityö käsittelee operaattoritasoisen Ethernetin hallintaa yhden runkoverkkoalueen sisällä. Työssä käydään läpi standardoidut operaattorikestoiset Ethernet-palvelut, teknologiat joilla palveluja tällä hetkellä tuotetaan, ehdokkaat tulevaisuuden Ethernet-siirtoverkkoteknologioiksi sekä keskeisimmät verkonhallintaan liittyvät standardit. Työn jälkimmäisessä puoliskossa esitellään Euroopan Unionin 7th Framework ETNA -projektia varten kehitetty verkonhallintajärjestelmä. Hallintajärjestelmä tarjoaa rajapinnan jonka kautta on mahdollista provisioida suojattuja Ethernet-palveluja kahden asiakasliityntäpisteen välillä, ja lisäksi lähetyspuita joissa kohteina on useampi asiakaspiste. Hallintajärjestelmältä tilatut palvelut viestitetään Ben Gurionin yliopiston toteuttaman, verkkoprosessoreilla toimivan välityskerroksen välitystauluihin.Internet is evolving from its role as a mere information provider to an ubiquitous infrastructure crucial to society. The current technologies running the majority of global Internet - IPv4 in addressing, MPLS as core transport and SDH as the physical transfer technology - have been long-lived. However, their dominance has started to diminish because a network technology common to all, Ethernet, has started to expand from local to metropolitan and wide area networks. Most enterprises and home users already use Ethernet in their LAN. Connecting these sites to MAN or WAN with the same technology is the logical next step in technology consolidation. This has raised the demand for Carrier Ethernet services. However, internally they are still mostly provided with non-Ethernet technologies such as MPLS or SDH, because currently Ethernet lacks the necessary service assurance components. The real challenge in future internetworking is creating a Carrier Ethernet Transport (CET). With CET, any imaginable telecommunication service is delivered with a purely Ethernet based technology. When we have Ethernet in transport networks, it is no more a long stretch to a global, routed end-to-end Ethernet. This thesis covers management of an intra-domain CET control plane. First, Carrier Ethernet services and technologies currently producing these services are analyzed. Second, requirements imposed to CET and current CET candidates are discussed. Third, network management standards and their alignment to carrier business is studied. After the background has been discussed, a control plane management system developed for the EU 7th framework ETNA project is introduced. The management system is capable of provisioning point-to-point and multipoint services and is controlled via a web-service -based northbound interface. The control plane is able to install the services as forwarding entries in a network processor -driven data plane developed at Ben Gurion University
    corecore