2,410 research outputs found

    Dynamic bandwidth allocation in ATM networks

    Get PDF
    Includes bibliographical references.This thesis investigates bandwidth allocation methodologies to transport new emerging bursty traffic types in ATM networks. However, existing ATM traffic management solutions are not readily able to handle the inevitable problem of congestion as result of the bursty traffic from the new emerging services. This research basically addresses bandwidth allocation issues for bursty traffic by proposing and exploring the concept of dynamic bandwidth allocation and comparing it to the traditional static bandwidth allocation schemes

    Resource management for multimedia traffic over ATM broadband satellite networks

    Get PDF
    PhDAbstract not availabl

    On-board congestion control for satellite packet switching networks

    Get PDF
    It is desirable to incorporate packet switching capability on-board for future communication satellites. Because of the statistical nature of packet communication, incoming traffic fluctuates and may cause congestion. Thus, it is necessary to incorporate a congestion control mechanism as part of the on-board processing to smooth and regulate the bursty traffic. Although there are extensive studies on congestion control for both baseband and broadband terrestrial networks, these schemes are not feasible for space based switching networks because of the unique characteristics of satellite link. Here, we propose a new congestion control method for on-board satellite packet switching. This scheme takes into consideration the long propagation delay in satellite link and takes advantage of the the satellite's broadcasting capability. It divides the control between the ground terminals and satellite, but distributes the primary responsibility to ground terminals and only requires minimal hardware resource on-board satellite

    ATOM : a distributed system for video retrieval via ATM networks

    Get PDF
    The convergence of high speed networks, powerful personal computer processors and improved storage technology has led to the development of video-on-demand services to the desktop that provide interactive controls and deliver Client-selected video information on a Client-specified schedule. This dissertation presents the design of a video-on-demand system for Asynchronous Transfer Mode (ATM) networks, incorporating an optimised topology for the nodes in the system and an architecture for Quality of Service (QoS). The system is called ATOM which stands for Asynchronous Transfer Mode Objects. Real-time video playback over a network consumes large bandwidth and requires strict bounds on delay and error in order to satisfy the visual and auditory needs of the user. Streamed video is a fundamentally different type of traffic to conventional IP (Internet Protocol) data since files are viewed in real-time, not downloaded and then viewed. This streaming data must arrive at the Client decoder when needed or it loses its interactive value. Characteristics of multimedia data are investigated including the use of compression to reduce the excessive bit rates and storage requirements of digital video. The suitability of MPEG-1 for video-on-demand is presented. Having considered the bandwidth, delay and error requirements of real-time video, the next step in designing the system is to evaluate current models of video-on-demand. The distributed nature of four such models is considered, focusing on how Clients discover Servers and locate videos. This evaluation eliminates a centralized approach in which Servers have no logical or physical connection to any other Servers in the network and also introduces the concept of a selection strategy to find alternative Servers when Servers are fully loaded. During this investigation, it becomes clear that another entity (called a Broker) could provide a central repository for Server information. Clients have logical access to all videos on every Server simply by connecting to a Broker. The ATOM Model for distributed video-on-demand is then presented by way of a diagram of the topology showing the interconnection of Servers, Brokers and Clients; a description of each node in the system; a list of the connectivity rules; a description of the protocol; a description of the Server selection strategy and the protocol if a Broker fails. A sample network is provided with an example of video selection and design issues are raised and solved including how nodes discover each other, a justification for using a mesh topology for the Broker connections, how Connection Admission Control (CAC) is achieved, how customer billing is achieved and how information security is maintained. A calculation of the number of Servers and Brokers required to service a particular number of Clients is presented. The advantages of ATOM are described. The underlying distributed connectivity is abstracted away from the Client. Redundant Server/Broker connections are eliminated and the total number of connections in the system are minimized by the rule stating that Clients and Servers may only connect to one Broker at a time. This reduces the total number of Switched Virtual Circuits (SVCs) which are a performance hindrance in ATM. ATOM can be easily scaled by adding more Servers which increases the total system capacity in terms of storage and bandwidth. In order to transport video satisfactorily, a guaranteed end-to-end Quality of Service architecture must be in place. The design methodology for such an architecture is investigated starting with a review of current QoS architectures in the literature which highlights important definitions including a flow, a service contract and flow management. A flow is a single media source which traverses resource modules between Server and Client. The concept of a flow is important because it enables the identification of the areas requiring consideration when designing a QoS architecture. It is shown that ATOM adheres to the principles motivating the design of a QoS architecture, namely the Integration, Separation and Transparency principles. The issue of mapping human requirements to network QoS parameters is investigated and the action of a QoS framework is introduced, including several possible causes of QoS degradation. The design of the ATOM Quality of Service Architecture (AQOSA) is then presented. AQOSA consists of 11 modules which interact to provide end-to-end QoS guarantees for each stream. Several important results arise from the design. It is shown that intelligent choice of stored videos in respect of peak bandwidth can improve overall system capacity. The concept of disk striping over a disk array is introduced and a Data Placement Strategy is designed which eliminates disk hot spots (i.e. Overuse of some disks whilst others lie idle.) A novel parameter (the B-P Ratio) is presented which can be used by the Server to predict future bursts from each video stream. The use of Traffic Shaping to decrease the load on the network from each stream is presented. Having investigated four algorithms for rewind and fast-forward in the literature, a rewind and fast-forward algorithm is presented. The method produces a significant decrease in bandwidth, and the resultant stream is very constant, reducing the chance that the stream will add to network congestion. The C++ classes of the Server, Broker and Client are described emphasizing the interaction between classes. The use of ATOM in the Virtual Private Network and the multimedia teaching laboratory is considered. Conclusions and recommendations for future work are presented. It is concluded that digital video applications require high bandwidth, low error, low delay networks; a video-on-demand system to support large Client volumes must be distributed, not centralized; control and operation (transport) must be separated; the number of ATM Switched Virtual Circuits (SVCs) must be minimized; the increased connections caused by the Broker mesh is justified by the distributed information gain; a Quality of Service solution must address end-to-end issues. It is recommended that a web front-end for Brokers be developed; the system be tested in a wide area A TM network; the Broker protocol be tested by forcing failure of a Broker and that a proprietary file format for disk striping be implemented

    Applications of satellite technology to broadband ISDN networks

    Get PDF
    Two satellite architectures for delivering broadband integrated services digital network (B-ISDN) service are evaluated. The first is assumed integral to an existing terrestrial network, and provides complementary services such as interconnects to remote nodes as well as high-rate multicast and broadcast service. The interconnects are at a 155 Mbs rate and are shown as being met with a nonregenerative multibeam satellite having 10-1.5 degree spots. The second satellite architecture focuses on providing private B-ISDN networks as well as acting as a gateway to the public network. This is conceived as being provided by a regenerative multibeam satellite with on-board ATM (asynchronous transfer mode) processing payload. With up to 800 Mbs offered, higher satellite EIRP is required. This is accomplished with 12-0.4 degree hopping beams, covering a total of 110 dwell positions. It is estimated the space segment capital cost for architecture one would be about 190Mwhereasthesecondarchitecturewouldbeabout190M whereas the second architecture would be about 250M. The net user cost is given for a variety of scenarios, but the cost for 155 Mbs services is shown to be about $15-22/minute for 25 percent system utilization

    QoS provisioning in multimedia streaming

    Get PDF
    Multimedia consists of voice, video, and data. Sample applications include video conferencing, video on demand, distance learning, distributed games, and movies on demand. Providing Quality of Service (QoS) for multimedia streaming has been a difficult and challenging problem. When multimedia traffic is transported over a network, video traffic, though usually compressed/encoded for bandwidth reduction, still consumes most of the bandwidth. In addition, compressed video streams typically exhibit highly variable bit rates as well as long range dependence properties, thus exacerbating the challenge in meeting the stringent QoS requirements of multimedia streaming with high network utilization. Dynamic bandwidth allocation in which video traffic prediction can play an important role is thus needed. Prediction of the variation of the I frame size using Least Mean Square (LMS) is first proposed. Owing to a smoother sequence, better prediction has been achieved as compared to the composite MPEG video traffic prediction scheme. One problem with this LMS algorithm is its slow convergence. In Variable Bit Rate (VBR) videos characterized by frequent scene changes, the LMS algorithm may result in an extended period of intractability, and thus may experience excessive cell loss during scene changes. A fast convergent non-linear predictor called Variable Step-size Algorithm (VSA) is subsequently proposed to overcome this drawback. The VSA algorithm not only incurs small prediction errors but more importantly achieves fast convergence. It tracks scene changes better than LMS. Bandwidth is then assigned based on the predicted I frame size which is usually the largest in a Group of Picture (GOP). Hence, the Cell Loss Ratio (CLR) can be kept small. By reserving bandwidth at least equal to the predicted one, only prediction errors need to be buffered. Since the prediction error was demonstrated to resemble white noise or exhibits at most short term memory, smaller buffers, less delay, and higher bandwidth utilization can be achieved. In order to further improve network bandwidth utilization, a QoS guaranteed on-line bandwidth allocation is proposed. This method allocates the bandwidth based on the predicted GOP and required QoS. Simulations and analytical results demonstrate that this scheme provides guaranteed delay and achieves higher bandwidth utilization. Network traffic is generally accepted to be self similar. Aggregating self similar traffic can actually intensify rather than diminish burstiness. Thus, traffic prediction plays an important role in network management. Least Mean Kurtosis (LMK), which uses the negated kurtosis of the error signal as the cost function, is proposed to predict the self similar traffic. Simulation results show that the prediction performance is improved greatly as compared to the LMS algorithm. Thus, it can be used to effectively predict the real time network traffic. The Differentiated Service (DiffServ) model is a less complex and more scalable solution for providing QoS to IP as compared to the Integrated Service (IntServ) model. We propose to transport MPEG frames through various service classes of DiffServ according to the MPEG video characteristics. Performance analysis and simulation results show that our proposed approach can not only guarantee QoS but can also achieve high bandwidth utilization. As the end video quality is determined not only by the network QoS but also by the encoded video quality, we consider video quality from these two aspects and further propose to transport spatial scalable encoded videos over DiffServ. Performance analysis and simulation results show that this can provision QoS guarantees. The dropping policy we propose at the egress router can reduce the traffic load as well as the risk of congestion in other domains

    Quality Planning for Distributed Collaborative Multimedia Applications

    Get PDF
    The tremendous power and low price of today s computer systems have created the opportunity for exciting applications rich with graphics audio and video Despite this potential planning computer systems to support the intensity of these multimedia applications is an extremely difficult task We have developed a flexible model and method that allows us to predict multimedia application performance from the user s perspective Our model takes into account the components fundamental to multimedia application quality latency jitter and data loss In applying our method to three specific applications we have identified some general traits 1) processors are the bottleneck in performance for many multimedia applications 2) networks with more bandwidth often do not increase the quality of multimedia applications and 3) performance for many multimedia applications can be improved greatly by shifting capacity demand from computer system components that are heavily loaded to those that are more lightly loade

    Requirements analysis of the VoD application using the tools in TRADE

    Get PDF
    This report contains a specification of requirements for a video-on-demand (VoD) application developed at Belgacom, used as a trial application in the 2RARE project. The specification contains three parts: an informal specification in natural language; a semiformal specification consisting of a number of diagrams intended to illustrate the informal specification; and a formal specification that makes the requiremants on the desired software system precise. The informal specification is structured in such a way that it resembles official specification documents conforming to standards such as that of IEEE or ESA. The semiformal specification uses some of the tools in from a requirements engineering toolkit called TRADE (Toolkit for Requirements And Design Engineering). The purpose of TRADE is to combine the best ideas in current structured and object-oriented analysis and design methods within a traditional systems engineering framework. In the case of the VoD system, the systems engineering framework is useful because it provides techniques for allocation and flowdown of system functions to components. TRADE consists of semiformal techniques taken from structured and object-oriented analysis as well as a formal specification langyage, which provides constructs that correspond to the semiformal constructs. The formal specification used in TRADE is LCM (Language for Conceptual Modeling), which is a syntactically sugared version of order-sorted dynamic logic with equality. The purpose of this report is to illustrate and validate the TRADE/LCM approach in the specification of distributed, communication-intensive systems

    Some aspects of traffic control and performance evaluation of ATM networks

    Get PDF
    The emerging high-speed Asynchronous Transfer Mode (ATM) networks are expected to integrate through statistical multiplexing large numbers of traffic sources having a broad range of statistical characteristics and different Quality of Service (QOS) requirements. To achieve high utilisation of network resources while maintaining the QOS, efficient traffic management strategies have to be developed. This thesis considers the problem of traffic control for ATM networks. The thesis studies the application of neural networks to various ATM traffic control issues such as feedback congestion control, traffic characterization, bandwidth estimation, and Call Admission Control (CAC). A novel adaptive congestion control approach based on a neural network that uses reinforcement learning is developed. It is shown that the neural controller is very effective in providing general QOS control. A Finite Impulse Response (FIR) neural network is proposed to adaptively predict the traffic arrival process by learning the relationship between the past and future traffic variations. On the basis of this prediction, a feedback flow control scheme at input access nodes of the network is presented. Simulation results demonstrate significant performance improvement over conventional control mechanisms. In addition, an accurate yet computationally efficient approach to effective bandwidth estimation for multiplexed connections is investigated. In this method, a feed forward neural network is employed to model the nonlinear relationship between the effective bandwidth and the traffic situations and a QOS measure. Applications of this approach to admission control, bandwidth allocation and dynamic routing are also discussed. A detailed investigation has indicated that CAC schemes based on effective bandwidth approximation can be very conservative and prevent optimal use of network resources. A modified effective bandwidth CAC approach is therefore proposed to overcome the drawback of conventional methods. Considering statistical multiplexing between traffic sources, we directly calculate the effective bandwidth of the aggregate traffic which is modelled by a two-state Markov modulated Poisson process via matching four important statistics. We use the theory of large deviations to provide a unified description of effective bandwidths for various traffic sources and the associated ATM multiplexer queueing performance approximations, illustrating their strengths and limitations. In addition, a more accurate estimation method for ATM QOS parameters based on the Bahadur-Rao theorem is proposed, which is a refinement of the original effective bandwidth approximation and can lead to higher link utilisation

    Distributed multimedia systems

    Get PDF
    A distributed multimedia system (DMS) is an integrated communication, computing, and information system that enables the processing, management, delivery, and presentation of synchronized multimedia information with quality-of-service guarantees. Multimedia information may include discrete media data, such as text, data, and images, and continuous media data, such as video and audio. Such a system enhances human communications by exploiting both visual and aural senses and provides the ultimate flexibility in work and entertainment, allowing one to collaborate with remote participants, view movies on demand, access on-line digital libraries from the desktop, and so forth. In this paper, we present a technical survey of a DMS. We give an overview of distributed multimedia systems, examine the fundamental concept of digital media, identify the applications, and survey the important enabling technologies.published_or_final_versio
    • …
    corecore