657 research outputs found

    A survey on fiber nonlinearity compensation for 400 Gbps and beyond optical communication systems

    Full text link
    Optical communication systems represent the backbone of modern communication networks. Since their deployment, different fiber technologies have been used to deal with optical fiber impairments such as dispersion-shifted fibers and dispersion-compensation fibers. In recent years, thanks to the introduction of coherent detection based systems, fiber impairments can be mitigated using digital signal processing (DSP) algorithms. Coherent systems are used in the current 100 Gbps wavelength-division multiplexing (WDM) standard technology. They allow the increase of spectral efficiency by using multi-level modulation formats, and are combined with DSP techniques to combat the linear fiber distortions. In addition to linear impairments, the next generation 400 Gbps/1 Tbps WDM systems are also more affected by the fiber nonlinearity due to the Kerr effect. At high input power, the fiber nonlinear effects become more important and their compensation is required to improve the transmission performance. Several approaches have been proposed to deal with the fiber nonlinearity. In this paper, after a brief description of the Kerr-induced nonlinear effects, a survey on the fiber nonlinearity compensation (NLC) techniques is provided. We focus on the well-known NLC techniques and discuss their performance, as well as their implementation and complexity. An extension of the inter-subcarrier nonlinear interference canceler approach is also proposed. A performance evaluation of the well-known NLC techniques and the proposed approach is provided in the context of Nyquist and super-Nyquist superchannel systems.Comment: Accepted in the IEEE Communications Surveys and Tutorial

    Digital predistortion of RF amplifiers using baseband injection for mobile broadband communications

    Get PDF
    Radio frequency (RF) power amplifiers (PAs) represent the most challenging design parts of wireless transmitters. In order to be more energy efficient, PAs should operate in nonlinear region where they produce distortion that significantly degrades the quality of signal at transmitter’s output. With the aim of reducing this distortion and improve signal quality, digital predistortion (DPD) techniques are widely used. This work focuses on improving the performances of DPDs in modern, next-generation wireless transmitters. A new adaptive DPD based on an iterative injection approach is developed and experimentally verified using a 4G signal. The signal performances at transmitter output are notably improved, while the proposed DPD does not require large digital signal processing memory resources and computational complexity. Moreover, the injection-based DPD theory is extended to be applicable in concurrent dual-band wireless transmitters. A cross-modulation problem specific to concurrent dual-band transmitters is investigated in detail and novel DPD based on simultaneous injection of intermodulation and cross-modulation distortion products is proposed. In order to mitigate distortion compensation limit phenomena and memory effects in highly nonlinear RF PAs, this DPD is further extended and complete generalised DPD system for concurrent dual-band transmitters is developed. It is clearly proved in experiments that the proposed predistorter remarkably improves the in-band and out-of-band performances of both signals. Furthermore, it does not depend on frequency separation between frequency bands and has significantly lower complexity in comparison with previously reported concurrent dual-band DPDs

    Compensation technique for nonlinear distortion in RF circuits for multi-standard wireless systems

    Get PDF
    Recent technological advances in the RF and wireless industry has led to the design requirement of more sophisticated devices which can meet stringent specifications of bandwidth, data rate and throughput. These devices are required to be extremely sensitive and hence any external interference from other systems can severely affect the device and the output. This thesis introduces the existing problem in nonlinear components in a multi-standard wireless system due to interfering signals and suggests potential solution to the problem. Advances in RF and wireless systems with emerging new communication standards have made reconfigurablility and tunability a very viable option. RF transceivers are optimised for multi-standard operation, where one band of frequency can act as an interfering signal to the other band. Due to the presence of nonlinear circuits in the transceiver chains such as power amplifiers, reconfigurable and tunable filters and modulators, these interfering signals produce nonlinear distortion products which can deform the output signal considerably. Hence it becomes necessary to block these interfering signals using special components. The main objective of this thesis is to analyse and experimentally verify the nonlinear distortions in various RF circuits such as reconfigurable and tunable filters and devise ways to minimize the overall nonlinear distortion in the presence of other interfering signals. Reconfigurbality and tunablity in filters can be achieved using components such as varactor diodes, PIN diodes and optical switches. Nonlinear distortions in such components are measured using different signals and results noted. The compensation method developed to minimize nonlinear distortions in RF circuits caused due to interfering signals is explored thoroughly in this thesis. Compensation method used involves the design of novel microstrip bandstop filters which can block the interfering signals and hence give a clean output spectrum at the final stage. Recent years have seen the emergence of electronic band gap technology which has “band gap” properties meaning that a bandstop response is seen within particular range of frequency. This concept was utilised in the design of several novel bandstop filters using defected microstrip structure. Novel tunable bandstop filters has been introduced in order to block the unwanted signal. Fixed single-band and dual-band filters using DMS were fabricated with excellent achieved results. These filters were further extended to tunable structures. A dual-band tunable filter with miniaturized size was developed and designed. The designed filters were further used in the compensation technique where different scenarios showing the effect of interfering signals in wireless transceiver were described. Mathematical analysis proved the validation of the use of a bandstop filter as an inter-stage component. Distortion improvements of around 10dB have been experimentally verified using a power amplifier as device under test. Further experimental verification was carried out with a transmitter which included reconfigurable RF filters and power amplifier where an improvement of 15dB was achieved

    Quasi-lossless data transmission with ultra-long Raman fibre laser based amplification

    Get PDF
    The project consists of an experimental and numerical modelling study of the applications of ultra-long Raman fibre laser (URFL) based amplification techniques for high-speed multi-wavelength optical communications systems. The research is focused in telecommunications C-band 40 Gb/s transmission data rates with direct and coherent detection. The optical transmission performance of URFL based systems in terms of optical noise, gain bandwidth and gain flatness for different system configurations is evaluated. Systems with different overall span lengths, transmission fibre types and data modulation formats are investigated. Performance is compared with conventional Erbium doped fibre amplifier based system to evaluate system configurations where URFL based amplification provide performance or commercial advantages

    The GN-Model of Fiber Non-Linear Propagation and its Applications

    Get PDF
    Several approximate non-linear fiber propagation models have been proposed over the years. Recent reconsideration and extension of earlier modeling efforts has led to the formalization of the so-called Gaussian-noise (GN) model. The evidence collected so far hints at the GN-model as being a relatively simple and, at the same time, sufficiently reliable tool for performance prediction of uncompensated coherent systems, characterized by a favorable accuracy versus complexity trade-off. This paper tries to gather the recent results regarding the GN-model definition, understanding, relations versus other models, validation, limitations, closed form solutions, approximations and, in general, its applications and implications in link analysis and optimization, also within a network environmen

    Characterization and design of coherent optical OFDM transmission systems based on Hartley Transform

    Get PDF
    Nowadays, due to huge deployment of optical transport networks, a continuous increase towards higher data rates up to 100 Gb/s and beyond is observed. Furthermore, an evolution of the current optical networks is forecasted, acquiring new functionalities, e.g. elastic spectrum assignment for the optical signals. The target for these new challenges in transmission is to find techniques ready to deal with a growth of demand for bandwidth continuously asked by network operators, for whom the standard systems do not meet the new functionalities while higher rates are being set up. A solution for covering all of those needs is to adapt techniques capable to deal with such enormous data rates, and ensuring the same high efficiency for long distances and mitigate the optical impairments accumulated along the transmission path. Additionally, these transmission techniques are expected to provide some degree of flexibility, in order to enhance the network flexibility. A promising technology that can fully cope with those requires is the coherent optical orthogonal frequency division multiplexing (CO-OFDM). CO-OFDM provides several advantages, namely high sensitivity and spectral efficiency, simple integration and possibility to fully recover a signal in phase, amplitude and polarization. These systems are composed by digital signal processing (DSP) blocks that easily process data and can equalize and compensate the main impairments, providing high tolerance for dispersion effects. However, CO-OFDM systems are not free from drawbacks. Their high peak-to-average power ratio (PAPR) reduce their tolerance to nonlinearities. Furthermore, CO-OFDM systems are sensitive to any frequency shift and phase offset. Hence, a constant envelope optical OFDM (CE-OFDM) is proposed for significantly reducing the PAPR and solving high sensitivity to nonlinear impairments. It consists in a phase modulated discrete multi-tone signal, which is coherently detected at the receiver side. An alternative transform, the discrete Hartley transform, is proposed to speed up calculations in the DSP and eliminate the need to have a Hermitian symmetry. The optical CE-OFDM by its unique flexibility and rate scalability turns out as a great technology applicable to different configurations, ranging from access to core networks. In case of access solutions, several cases are investigated. First, the optical CE-OFDM is applied for radio access network signals delivery by means of a wavelength division multiplexing (WDM) overlay in deployed access architecture. A decomposed radio access network is deployed over an existing standard passive optical network (PON), capable to avoid interference and cross talks with access signals between network clients. The system exhibited narrow channel spacing, while reducing losses fed into the access equipment path. Next, a full duplex 10 Gb/s bidirectional PON transmission over a single wavelength with RSOA based ONU is investigated. The key point of that system is the upstream transmission, which is achieved re-modulating the phase of a downstream intensity modulated signal after proper saturation. The reported sensitivity performances show a power budget matching the PON standards and an OSNR easy to reach on non-amplified PON. Next, a flexible metropolitan area network of up to 100km with traffic add/drop using WDM is investigated. There the narrowing effect of the optical filters is studied. Finally, an elastic upgrade of the existing Telefonica model of the Spanish national core network is proposed. For that, the transceiver architecture is proposed to be operated featuring polarization multiplexing. Respect to the existing fixed grid, the flexible approach (enabled by the CE-OFDM transceiver) results into reduced bandwidth occupancy and low OSNR requirement.Hoy en día, debido al gran despliegue de las redes de ópticas de transporte, se espera un aumento continuado hacia mayores velocidades de datos, hasta 100 Gb/s y más allá. Por otra parte, la evolución que se prevé para las redes ópticas actuales, incluye la adquisición de nuevas funcionalidades, por ejemplo, la asignación del espectro de forma elástica para las señales ópticas. Por tanto, el claro desafío en cuanto a las tecnologías de transmisión es encontrar técnicas preparadas para hacer frente a un crecimiento de la demanda de ancho de banda; demanda que continuamente se incrementa por parte de los operadores de red, para quienes los sistemas estándar no se acaban de ajustar a las nuevas funcionalidades que esperan para la red. Una solución para cubrir todas estas necesidades es la adaptación de técnicas capaces de hacer frente a estas velocidades de datos enormes, y garantizar el mismo nivel de eficiencia para las largas distancias y mitigar las deficiencias ópticas acumuladas a lo largo de la ruta de transmisión. Además, se espera que estas técnicas de transmisión puedan proporcionar cierto grado de flexibilidad, a fin de mejorar y hacer más eficiente la gestión de la red. Una tecnología prometedora que puede hacer frente a estos requisitos es lo que se llama multiplexación por división de frecuencias ortogonales, combinado con la detección óptica coherente (CO-OFDM). CO-OFDM ofrece varias ventajas, entre otras: alta sensibilidad y eficiencia espectral y, sobre todo, la posibilidad de recuperar por completo de una señal en fase, la amplitud y la polarización. Estos sistemas están compuestos por bloques de procesado de señales digitales (DSP) que permiten detectar los datos fácilmente así como también compensar las principales degradaciones, proporcionando alta tolerancia a los efectos de dispersión. Sin embargo, los sistemas CO-OFDM no están exentos de inconvenientes. Su alta relación de potencia de pico a potencia media (PAPR) reduce sensiblemente la tolerancia no linealidades. Por otra parte, los sistemas CO-OFDM son sensibles a cualquier cambio de frecuencia y desplazamiento de fase. Por tanto, se propone un sistema OFDM de envolvente constante (CE-OFDM) para reducir significativamente la PAPR y solucionar la alta sensibilidad a las degradaciones no lineales. Consiste en una señal OFDM modulada en fase, que se detecta coherentemente en el receptor. Una transformada alternativa, la transformada discreta de Hartley, se propone para acelerar los cálculos en el DSP. El sistema CE-OFDM por su flexibilidad y escalabilidad única, resulta una tecnología aplicable a diferentes escenarios, que van desde las redes de acceso hasta las redes troncales. En el caso de las soluciones de acceso, se investigan varios casos. En primer lugar, el CE-OFDM aplica para el desarrollo y soporte de datos de una red radio, reutilizando una red óptica de acceso ya desplegada. A continuación, se investiga la transmisión bidireccional dúplex a 10 Gb / s sobre una sola longitud de onda empleando un RSOA a las unidades de usuario. El punto clave de este sistema es la transmisión en sentido ascendente, que se consigue re-modulando la fase de una señal de intensidad modulada después de saturar de forma adecuada. A continuación, se estudia una red de área metropolitana flexible de hasta 100 km. Concretamente el efecto de concatenación de filtros ópticos es el objetivo de este estudio. Finalmente, se propone una actualización elástica del modelo de Telefónica I+D para la red troncal española. Por ello, se propone operar el CE-OFDM en multiplexación de polarización. Los resultados muestran que esta combinación reduce sensiblemente el empleo de ancho de banda esto como los requisitos de los enlaces transmisión, reduciendo también los costes tanto de desarrollo como de operación y mantenimiento de la red.Avui dia, a causa del gran desplegament de les xarxes de òptiques de transport, s'espera un augment continuat cap a majors velocitats de dades, fins a 100 Gb/s i més enllà. D'altra banda, l'evolució que es preveu per a les xarxes òptiques actuals, inclou l'adquisició de noves funcionalitats, per exemple, assignació de l'espectre de forma elàstica per als senyals òptics. Per tant, el clar desafiament pel que fa a les tecnologies de transmissió és trobar tècniques preparades per fer front a un creixement de la demanda d'ample de banda; demanda que contínuament es fa per part dels operadors de xarxa, per als qui els sistemes estàndard no s'acaben d'ajustar a les noves funcionalitats que esperen per a la xarxa. Una solució per a cobrir totes aquestes necessitats és l'adaptació de tècniques capaces de fer front a aquestes velocitats de dades enormes, i garantir el mateix nivell d'eficiència per a les llargues distàncies i mitigar les deficiències òptiques acumulades al llarg de la ruta de transmissió. A més, s'espera que aquestes tècniques de transmissió puguin proporcionar cert grau de flexibilitat, per tal de millorar i tornar més eficient la gestió de la xarxa. Una tecnologia prometedora que pot fer front a aquests requisits és el que s'anomena multiplexació per divisió de freqüències ortogonals, combinat amb la detecció òptica coherent (CO-OFDM). CO-OFDM ofereix diversos avantatges, entre altres: alta sensibilitat i eficiència espectral i, sobretot, la possibilitat de recuperar per complet d'una senyal en fase, l'amplitud i la polarització. Aquests sistemes estan compostos per blocs de processament de senyals digitals (DSP) que permeten detectar les dades fàcilment així com també compensar les principals degradacions, proporcionant alta tolerància pels efectes de dispersió. No obstant això, els sistemes CO-OFDM no estan exempts d'inconvenients. La seva alta relació de potència de pic a potència mitjana (PAPR) redueix sensiblement la tolerància a no linealitats. D'altra banda, els sistemes de CO-OFDM són sensibles a qualsevol canvi de freqüència i desplaçament de fase. Per tant, es proposa un sistema OFDM d'envolvent constant (CE-OFDM) per a reduir significativament la PAPR i solucionar l'alta sensibilitat a les degradacions no lineals. Consisteix en un senyal OFDM modulat en fase, que es detecta coherentment en el receptor. Una transformada alternativa, la transformada discreta d'Hartley, es proposa accelerar els càlculs en el DSP. El sistema CE-OFDM per la seva flexibilitat i escalabilitat única, resulta una tecnologia aplicable a diferents escenaris, que van des de les xarxes d'accés fins a les xarxes troncals. En el cas de les solucions d'accés, s'investiguen diversos casos. En primer lloc, el CE-OFDM s'aplica per al desplegament i suport de dades d'una xarxa radio, reutilitzant una xarxa òptica d'accés ja desplegada. A continuació, s'investiga la transmissió bidireccional dúplex a 10 Gb/s sobre una sola longitud d'ona emprant un RSOA a les unitats d'usuari. El punt clau d'aquest sistema és la transmissió en sentit ascendent, que s'aconsegueix re-modulant la fase d'un senyal d'intensitat modulada després de saturar-la de forma adequada. A continuació, s'estudia una xarxa d'àrea metropolitana flexible de fins a 100 km. Concretament l'efecte de concatenació de filtres òptics és l'objectiu d'aquest estudi. Finalment, es proposa una actualització elàstica del model de Telefónica I+D per a la xarxa troncal espanyola. Per això, es proposa operar el CE-OFDM en multiplexació de polarització. Els resultats mostren que aquesta combinació redueix sensiblement l'ocupació d'ample de banda això com també els requisits dels enllaços transmissió, reduint també els costos tant de desplegament com d'operació i manteniment de la xarxa

    Digital Pre-distortion for Interference Reduction in Dynamic Spectrum Access Networks

    Get PDF
    Given the ever increasing reliance of today’s society on ubiquitous wireless access, the paradigm of dynamic spectrum access (DSA) as been proposed and implemented for utilizing the limited wireless spectrum more efficiently. Orthogonal frequency division multiplexing (OFDM) is growing in popularity for adoption into wireless services employing DSA frame- work, due to its high bandwidth efficiency and resiliency to multipath fading. While these advantages have been proven for many wireless applications, including LTE-Advanced and numerous IEEE wireless standards, one potential drawback of OFDM or its non-contiguous variant, NC-OFDM, is that it exhibits high peak-to-average power ratios (PAPR), which can induce in-band and out-of-band (OOB) distortions when the peaks of the waveform enter the compression region of the transmitter power amplifier (PA). Such OOB emissions can interfere with existing neighboring transmissions, and thereby severely deteriorate the reliability of the DSA network. A performance-enhancing digital pre-distortion (DPD) technique compensating for PA and in-phase/quadrature (I/Q) modulator distortions is proposed in this dissertation. Al- though substantial research efforts into designing DPD schemes have already been presented in the open literature, there still exists numerous opportunities to further improve upon the performance of OOB suppression for NC-OFDM transmission in the presence of RF front-end impairments. A set of orthogonal polynomial basis functions is proposed in this dissertation together with a simplified joint DPD structure. A performance analysis is presented to show that the OOB emissions is reduced to approximately 50 dBc with proposed algorithms employed during NC-OFDM transmission. Furthermore, a novel and intuitive DPD solution that can minimize the power regrowth at any pre-specified frequency in the spurious domain is proposed in this dissertation. Conventional DPD methods have been proven to be able to effectively reduce the OOB emissions that fall on top of adjacent channels. However more spectral emissions in more distant frequency ranges are generated by employing such DPD solutions, which are potentially in violation of the spurious emission limit. At the same time, the emissions in adjacent channel must be kept under the OOB limit. To the best of the author’s knowledge, there has not been extensive research conducted on this topic. Mathematical derivation procedures of the proposed algorithm are provided for both memoryless nonlinear model and memory-based nonlinear model. Simulation results show that the proposed method is able to provide a good balance of OOB emissions and emissions in the far out spurious domain, by reducing the spurious emissions by 4-5 dB while maintaining the adjacent channel leakage ratio (ACLR) improvement by at least 10 dB, comparing to the PA output spectrum without any DPD

    A digital polar transmitter for multi-band OFDM Ultra-WideBand

    No full text
    Linear power amplifiers used to implement the Ultra-Wideband standard must be backed off from optimum power efficiency to meet the standard specifications and the power efficiency suffers. The problem of low efficiency can be mitigated by polar modulation. Digital polar architectures have been employed on numerous wireless standards like GSM, EDGE, and WLAN, where the fractional bandwidths achieved are only about 1%, and the power levels achieved are often in the vicinity of 20 dBm. Can the architecture be employed on wireless standards with low-power and high fractional bandwidth requirements and yet achieve good power efficiency? To answer these question, this thesis studies the application of a digital polar transmitter architecture with parallel amplifier stages for UWB. The concept of the digital transmitter is motivated and inspired by three factors. First, unrelenting advances in the CMOS technology in deep-submicron process and the prevalence of low-cost Digital Signal processing have resulted in the realization of higher level of integration using digitally intensive approaches. Furthermore, the architecture is an evolution of polar modulation, which is known for high power efficiency in other wireless applications. Finally, the architecture is operated as a digital-to-analog converter which circumvents the use of converters in conventional transmitters. Modeling and simulation of the system architecture is performed on the Agilent Advanced Design System Ptolemy simulation platform. First, by studying the envelope signal, we found that envelope clipping results in a reduction in the peak-to-average power ratio which in turn improves the error vector magnitude performance (figure of merit for the study). In addition, we have demonstrated that a resolution of three bits suffices for the digital polar transmitter when envelope clipping is performed. Next, this thesis covers a theoretical derivation for the estimate of the error vector magnitude based on the resolution, quantization and phase noise errors. An analysis on the process variations - which result in gain and delay mismatches - for a digital transmitter architecture with four bits ensues. The above studies allow RF designers to estimate the number of bits required and the amount of distortion that can be tolerated in the system. Next, a study on the circuit implementation was conducted. A DPA that comprises 7 parallel RF amplifiers driven by a constant RF phase-modulated signal and 7 cascode transistors (individually connected in series with the bottom amplifiers) digitally controlled by a 3-bit digitized envelope signal to reconstruct the UWB signal at the output. Through the use of NFET models from the IBM 130-nm technology, our simulation reveals that our DPA is able to achieve an EVM of - 22 dB. The DPA simulations have been performed at 3.432 GHz centre frequency with a channel bandwidth of 528 MHz, which translates to a fractional bandwidth of 15.4%. Drain efficiencies of 13.2/19.5/21.0% have been obtained while delivering -1.9/2.5/5.5 dBm of output power and consuming 5/9/17 mW of power. In addition, we performed a yield analysis on the digital polar amplifier, based on unit-weighted and binary-weighted architecture, when gain variations are introduced in all the individual stages. The dynamic element matching method is also introduced for the unit-weighted digital polar transmitter. Monte Carlo simulations reveal that when the gain of the amplifiers are allowed to vary at a mean of 1 with a standard deviation of 0.2, the binary-weighted architecture obtained a yield of 79%, while the yields of the unit-weighted architectures are in the neighbourhood of 95%. Moreover, the dynamic element matching technique demonstrates an improvement in the yield by approximately 3%. Finally, a hardware implementation for this architecture based on software-defined arbitrary waveform generators is studied. In this section, we demonstrate that the error vector magnitude results obtained with a four-stage binary-weighted digital polar transmitter under ideal combining conditions fulfill the European Computer Manufacturers Association requirements. The proposed experimental setup, believed to be the first ever attempted, confirm the feasibility of a digital polar transmitter architecture for Ultra-Wideband. In addition, we propose a number of power combining techniques suitable for the hardware implementation. Spatial power combining, in particular, shows a high potential for the digital polar transmitter architecture. The above studies demonstrate the feasibility of the digital polar architecture with good power efficiency for a wideband wireless standard with low-power and high fractional bandwidth requirements
    corecore