6 research outputs found

    Data-efficient machine learning for design and optimisation of complex systems

    Get PDF

    Gradient boosting in automatic machine learning: feature selection and hyperparameter optimization

    Get PDF
    Das Ziel des automatischen maschinellen Lernens (AutoML) ist es, alle Aspekte der Modellwahl in prädiktiver Modellierung zu automatisieren. Diese Arbeit beschäftigt sich mit Gradienten Boosting im Kontext von AutoML mit einem Fokus auf Gradient Tree Boosting und komponentenweisem Boosting. Beide Techniken haben eine gemeinsame Methodik, aber ihre Zielsetzung ist unterschiedlich. Während Gradient Tree Boosting im maschinellen Lernen als leistungsfähiger Vorhersagealgorithmus weit verbreitet ist, wurde komponentenweises Boosting im Rahmen der Modellierung hochdimensionaler Daten entwickelt. Erweiterungen des komponentenweisen Boostings auf multidimensionale Vorhersagefunktionen werden in dieser Arbeit ebenfalls untersucht. Die Herausforderung der Hyperparameteroptimierung wird mit Fokus auf Bayesianische Optimierung und effiziente Stopping-Strategien diskutiert. Ein groß angelegter Benchmark über Hyperparameter verschiedener Lernalgorithmen, zeigt den kritischen Einfluss von Hyperparameter Konfigurationen auf die Qualität der Modelle. Diese Daten können als Grundlage für neue AutoML- und Meta-Lernansätze verwendet werden. Darüber hinaus werden fortgeschrittene Strategien zur Variablenselektion zusammengefasst und eine neue Methode auf Basis von permutierten Variablen vorgestellt. Schließlich wird ein AutoML-Ansatz vorgeschlagen, der auf den Ergebnissen und Best Practices für die Variablenselektion und Hyperparameteroptimierung basiert. Ziel ist es AutoML zu vereinfachen und zu stabilisieren sowie eine hohe Vorhersagegenauigkeit zu gewährleisten. Dieser Ansatz wird mit AutoML-Methoden, die wesentlich komplexere Suchräume und Ensembling Techniken besitzen, verglichen. Vier Softwarepakete für die statistische Programmiersprache R sind Teil dieser Arbeit, die neu entwickelt oder erweitert wurden: mlrMBO: Ein generisches Paket für die Bayesianische Optimierung; autoxgboost: Ein AutoML System, das sich vollständig auf Gradient Tree Boosting fokusiert; compboost: Ein modulares, in C++ geschriebenes Framework für komponentenweises Boosting; gamboostLSS: Ein Framework für komponentenweises Boosting additiver Modelle für Location, Scale und Shape.The goal of automatic machine learning (AutoML) is to automate all aspects of model selection in (supervised) predictive modeling. This thesis deals with gradient boosting techniques in the context of AutoML with a focus on gradient tree boosting and component-wise gradient boosting. Both techniques have a common methodology, but their goal is quite different. While gradient tree boosting is widely used in machine learning as a powerful prediction algorithm, component-wise gradient boosting strength is in feature selection and modeling of high-dimensional data. Extensions of component-wise gradient boosting to multidimensional prediction functions are considered as well. Focusing on Bayesian optimization and efficient early stopping strategies the challenge of hyperparameter optimization for these algorithms is discussed. Difficulty in the optimization of these algorithms is shown by a large scale random search on hyperparameters for machine learning algorithms, that can build the foundation of new AutoML and metalearning approaches. Furthermore, advanced feature selection strategies are summarized and a new method based on shadow features is introduced. Finally, an AutoML approach based on the results and best practices for feature selection and hyperparameter optimization is proposed, with the goal of simplifying and stabilizing AutoML while maintaining high prediction accuracy. This is compared to AutoML approaches using much more complex search spaces and ensembling techniques. Four software packages for the statistical programming language R have been newly developed or extended as a part of this thesis: mlrMBO: A general framework for Bayesian optimization; autoxgboost: An automatic machine learning framework that heavily utilizes gradient tree boosting; compboost: A modular framework for component-wise boosting written in C++; gamboostLSS: A framework for component-wise boosting for generalized additive models for location scale and shape

    Gradient boosting in automatic machine learning: feature selection and hyperparameter optimization

    Get PDF
    Das Ziel des automatischen maschinellen Lernens (AutoML) ist es, alle Aspekte der Modellwahl in prädiktiver Modellierung zu automatisieren. Diese Arbeit beschäftigt sich mit Gradienten Boosting im Kontext von AutoML mit einem Fokus auf Gradient Tree Boosting und komponentenweisem Boosting. Beide Techniken haben eine gemeinsame Methodik, aber ihre Zielsetzung ist unterschiedlich. Während Gradient Tree Boosting im maschinellen Lernen als leistungsfähiger Vorhersagealgorithmus weit verbreitet ist, wurde komponentenweises Boosting im Rahmen der Modellierung hochdimensionaler Daten entwickelt. Erweiterungen des komponentenweisen Boostings auf multidimensionale Vorhersagefunktionen werden in dieser Arbeit ebenfalls untersucht. Die Herausforderung der Hyperparameteroptimierung wird mit Fokus auf Bayesianische Optimierung und effiziente Stopping-Strategien diskutiert. Ein groß angelegter Benchmark über Hyperparameter verschiedener Lernalgorithmen, zeigt den kritischen Einfluss von Hyperparameter Konfigurationen auf die Qualität der Modelle. Diese Daten können als Grundlage für neue AutoML- und Meta-Lernansätze verwendet werden. Darüber hinaus werden fortgeschrittene Strategien zur Variablenselektion zusammengefasst und eine neue Methode auf Basis von permutierten Variablen vorgestellt. Schließlich wird ein AutoML-Ansatz vorgeschlagen, der auf den Ergebnissen und Best Practices für die Variablenselektion und Hyperparameteroptimierung basiert. Ziel ist es AutoML zu vereinfachen und zu stabilisieren sowie eine hohe Vorhersagegenauigkeit zu gewährleisten. Dieser Ansatz wird mit AutoML-Methoden, die wesentlich komplexere Suchräume und Ensembling Techniken besitzen, verglichen. Vier Softwarepakete für die statistische Programmiersprache R sind Teil dieser Arbeit, die neu entwickelt oder erweitert wurden: mlrMBO: Ein generisches Paket für die Bayesianische Optimierung; autoxgboost: Ein AutoML System, das sich vollständig auf Gradient Tree Boosting fokusiert; compboost: Ein modulares, in C++ geschriebenes Framework für komponentenweises Boosting; gamboostLSS: Ein Framework für komponentenweises Boosting additiver Modelle für Location, Scale und Shape.The goal of automatic machine learning (AutoML) is to automate all aspects of model selection in (supervised) predictive modeling. This thesis deals with gradient boosting techniques in the context of AutoML with a focus on gradient tree boosting and component-wise gradient boosting. Both techniques have a common methodology, but their goal is quite different. While gradient tree boosting is widely used in machine learning as a powerful prediction algorithm, component-wise gradient boosting strength is in feature selection and modeling of high-dimensional data. Extensions of component-wise gradient boosting to multidimensional prediction functions are considered as well. Focusing on Bayesian optimization and efficient early stopping strategies the challenge of hyperparameter optimization for these algorithms is discussed. Difficulty in the optimization of these algorithms is shown by a large scale random search on hyperparameters for machine learning algorithms, that can build the foundation of new AutoML and metalearning approaches. Furthermore, advanced feature selection strategies are summarized and a new method based on shadow features is introduced. Finally, an AutoML approach based on the results and best practices for feature selection and hyperparameter optimization is proposed, with the goal of simplifying and stabilizing AutoML while maintaining high prediction accuracy. This is compared to AutoML approaches using much more complex search spaces and ensembling techniques. Four software packages for the statistical programming language R have been newly developed or extended as a part of this thesis: mlrMBO: A general framework for Bayesian optimization; autoxgboost: An automatic machine learning framework that heavily utilizes gradient tree boosting; compboost: A modular framework for component-wise boosting written in C++; gamboostLSS: A framework for component-wise boosting for generalized additive models for location scale and shape

    Bandits Help Simulated Annealing to Complete a Maximin Latin Hypercube Design

    No full text
    International audienceSimulated Annealing (SA) is commonly considered as an efficient method to construct Maximin Latin Hypercube Designs (LHDs) which are widely employed for Experimental Design. The Maximin LHD construction problem may be generalized to the Maximin LHD completion problem in an instance of which the measurements have already been taken at certain points. The construction may then be seen as a particular case of completion with no points given in advance.As the Maximin LHD completion was proved NP-complete and inapproximable with a constant factor, the choice of SA to treat it shows itself naturally. The SA performance varies greatly depending on the mutation used. The completion problem is difficult because its nature changes when the number of given points varies. For a few fixed points, the completion behaves similarly to the construction problem. In the opposite situation, numerous fixed points restrain the search space considerably and a different mutation is appropriate. A phase transition exists between these extreme cases.We thus provide SA with a mechanism which selects an appropriate mutation. Our approach is based on the observation that the choice of a mutation can be seen as a bandit problem. It has to cope with changes in the environment, which evolves together with the thermal descent. The results obtained prove that the bandit-driven SA adapts itself on the fly to the completion problem nature. We believe that other parametrized problems, where SA can be employed, may significantly benefit from the use of a decision-making algorithm which selects the appropriate mutation

    Learning-accelerated algorithms for simulation and optimization

    Get PDF
    Simulation and optimization are fundamental building blocks for many computational methods in science and engineering. In this work, we explore the use of machine learning techniques to accelerate compute-intensive tasks in both simulation and optimization. Specifically, two algorithms are developed: (1) a variance reduction algorithm for Monte Carlo simulations of mean-field particle systems, and (2) a global optimization algorithm for noisy expensive functions. For the variance reduction algorithm, we develop an adaptive-control-variates technique for a class of simulations, where many particles interact via common mean fields. Due to the presence of a large number of particles and highly nonlinear dynamics, simulating these mean-field particle models is often time-consuming. Our algorithm treats the body of particles in the system as a source of training data, then uses machine learning to automatically build a model for the underlying particle dynamics, and finally constructs control variates with the learned model. We prove that the mean estimators from our algorithm are unbiased. More importantly, we show that, for a system with sufficiently many particles, our algorithm asymptotically produces more efficient estimators than naive Monte Carlo under certain regularity conditions. We applied our variance reduction algorithm to an aerosol particle simulation and found that the resulting simulation is about 7 times faster. The second algorithm is a parallel surrogate optimization algorithm, known as ProSRS, for noisy expensive black-box functions. Within this algorithm, we develop an efficient weighted-radial-basis regression procedure for constructing the surrogates. Furthermore, we introduce a novel tree-based technique, called the “zoom strategy”, to further improve optimization efficiency. We prove that if ProSRS is run for sufficiently long, with probability converging to one there will be at least one sample among all the evaluations that will be arbitrarily close to the global minimum. We compared ProSRS to several state-of-the-art Bayesian optimization algorithms on a suite of standard benchmark functions and two real machine-learning hyperparameter-tuning problems. We found that our algorithm not only achieves significantly faster optimization convergence, but is also orders of magnitude cheaper in computational cost. We also applied ProSRS to the problem of characterizing and validating a complex aerosol model against experimental measurements, where twelve simulation parameters must be optimized. This case illustrates the use of ProSRS for general global optimization problems

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios
    corecore