177 research outputs found

    Bandit-Based Task Assignment for Heterogeneous Crowdsourcing

    Full text link
    We consider a task assignment problem in crowdsourcing, which is aimed at collecting as many reliable labels as possible within a limited budget. A challenge in this scenario is how to cope with the diversity of tasks and the task-dependent reliability of workers, e.g., a worker may be good at recognizing the name of sports teams, but not be familiar with cosmetics brands. We refer to this practical setting as heterogeneous crowdsourcing. In this paper, we propose a contextual bandit formulation for task assignment in heterogeneous crowdsourcing, which is able to deal with the exploration-exploitation trade-off in worker selection. We also theoretically investigate the regret bounds for the proposed method, and demonstrate its practical usefulness experimentally

    Task Selection for Bandit-Based Task Assignment in Heterogeneous Crowdsourcing

    Full text link
    Task selection (picking an appropriate labeling task) and worker selection (assigning the labeling task to a suitable worker) are two major challenges in task assignment for crowdsourcing. Recently, worker selection has been successfully addressed by the bandit-based task assignment (BBTA) method, while task selection has not been thoroughly investigated yet. In this paper, we experimentally compare several task selection strategies borrowed from active learning literature, and show that the least confidence strategy significantly improves the performance of task assignment in crowdsourcing.Comment: arXiv admin note: substantial text overlap with arXiv:1507.0580

    Crowdsourced PAC Learning under Classification Noise

    Full text link
    In this paper, we analyze PAC learnability from labels produced by crowdsourcing. In our setting, unlabeled examples are drawn from a distribution and labels are crowdsourced from workers who operate under classification noise, each with their own noise parameter. We develop an end-to-end crowdsourced PAC learning algorithm that takes unlabeled data points as input and outputs a trained classifier. Our three-step algorithm incorporates majority voting, pure-exploration bandits, and noisy-PAC learning. We prove several guarantees on the number of tasks labeled by workers for PAC learning in this setting and show that our algorithm improves upon the baseline by reducing the total number of tasks given to workers. We demonstrate the robustness of our algorithm by exploring its application to additional realistic crowdsourcing settings.Comment: 14 page

    An Incentive Compatible Multi-Armed-Bandit Crowdsourcing Mechanism with Quality Assurance

    Full text link
    Consider a requester who wishes to crowdsource a series of identical binary labeling tasks to a pool of workers so as to achieve an assured accuracy for each task, in a cost optimal way. The workers are heterogeneous with unknown but fixed qualities and their costs are private. The problem is to select for each task an optimal subset of workers so that the outcome obtained from the selected workers guarantees a target accuracy level. The problem is a challenging one even in a non strategic setting since the accuracy of aggregated label depends on unknown qualities. We develop a novel multi-armed bandit (MAB) mechanism for solving this problem. First, we propose a framework, Assured Accuracy Bandit (AAB), which leads to an MAB algorithm, Constrained Confidence Bound for a Non Strategic setting (CCB-NS). We derive an upper bound on the number of time steps the algorithm chooses a sub-optimal set that depends on the target accuracy level and true qualities. A more challenging situation arises when the requester not only has to learn the qualities of the workers but also elicit their true costs. We modify the CCB-NS algorithm to obtain an adaptive exploration separated algorithm which we call { \em Constrained Confidence Bound for a Strategic setting (CCB-S)}. CCB-S algorithm produces an ex-post monotone allocation rule and thus can be transformed into an ex-post incentive compatible and ex-post individually rational mechanism that learns the qualities of the workers and guarantees a given target accuracy level in a cost optimal way. We provide a lower bound on the number of times any algorithm should select a sub-optimal set and we see that the lower bound matches our upper bound upto a constant factor. We provide insights on the practical implementation of this framework through an illustrative example and we show the efficacy of our algorithms through simulations

    T-Crowd: Effective Crowdsourcing for Tabular Data

    Full text link
    Crowdsourcing employs human workers to solve computer-hard problems, such as data cleaning, entity resolution, and sentiment analysis. When crowdsourcing tabular data, e.g., the attribute values of an entity set, a worker's answers on the different attributes (e.g., the nationality and age of a celebrity star) are often treated independently. This assumption is not always true and can lead to suboptimal crowdsourcing performance. In this paper, we present the T-Crowd system, which takes into consideration the intricate relationships among tasks, in order to converge faster to their true values. Particularly, T-Crowd integrates each worker's answers on different attributes to effectively learn his/her trustworthiness and the true data values. The attribute relationship information is also used to guide task allocation to workers. Finally, T-Crowd seamlessly supports categorical and continuous attributes, which are the two main datatypes found in typical databases. Our extensive experiments on real and synthetic datasets show that T-Crowd outperforms state-of-the-art methods in terms of truth inference and reducing the cost of crowdsourcing
    • …
    corecore