94 research outputs found

    How Useful is Learning in Mitigating Mismatch Between Digital Twins and Physical Systems?

    Get PDF
    In the control of complex systems, we observe two diametrical trends: model-based control derived from digital twins, and model-free control through AI. There are also attempts to bridge the gap between the two by incorporating learning-based AI algorithms into digital twins to mitigate mismatches between the digital twin model and the physical system. One of the most straightforward approaches to this is direct input adaptation. In this paper, we ask whether it is useful to employ a generic learning algorithm in such a setting, and our conclusion is "not very". We denote an algorithm to be more useful than another algorithm based on three aspects: 1) it requires fewer data samples to reach a desired minimal performance, 2) it achieves better performance for a reasonable number of data samples, and 3) it accumulates less regret. In our evaluation, we randomly sample problems from an industrially relevant geometry assurance context and measure the aforementioned performance indicators of 16 different algorithms. Our conclusion is that blackbox optimization algorithms, designed to leverage specific properties of the problem, generally perform better than generic learning algorithms, once again finding that "there is no free lunch"

    How Useful is Learning in Mitigating Mismatch Between Digital Twins and Physical Systems?

    Get PDF
    In the control of complex systems, we observe two diametrical trends: model-based control derived from digital twins, and model-free control through AI. There are also attempts to bridge the gap between the two by incorporating learning-based AI algorithms into digital twins to mitigate mismatches between the digital twin model and the physical system. One of the most straightforward approaches to this is direct input adaptation. In this paper, we ask whether it is useful to employ a generic learning algorithm in such a setting, and our conclusion is "not very". We denote an algorithm to be more useful than another algorithm based on three aspects: 1) it requires fewer data samples to reach a desired minimal performance, 2) it achieves better performance for a reasonable number of data samples, and 3) it accumulates less regret. In our evaluation, we randomly sample problems from an industrially relevant geometry assurance context and measure the aforementioned performance indicators of 16 different algorithms. Our conclusion is that blackbox optimization algorithms, designed to leverage specific properties of the problem, generally perform better than generic learning algorithms, once again finding that "there is no free lunch"

    On Experimentation in Software-Intensive Systems

    Get PDF
    Context: Delivering software that has value to customers is a primary concern of every software company. Prevalent in web-facing companies, controlled experiments are used to validate and deliver value in incremental deployments. At the same that web-facing companies are aiming to automate and reduce the cost of each experiment iteration, embedded systems companies are starting to adopt experimentation practices and leverage their activities on the automation developments made in the online domain. Objective: This thesis has two main objectives. The first objective is to analyze how software companies can run and optimize their systems through automated experiments. This objective is investigated from the perspectives of the software architecture, the algorithms for the experiment execution and the experimentation process. The second objective is to analyze how non web-facing companies can adopt experimentation as part of their development process to validate and deliver value to their customers continuously. This objective is investigated from the perspectives of the software development process and focuses on the experimentation aspects that are distinct from web-facing companies. Method: To achieve these objectives, we conducted research in close collaboration with industry and used a combination of different empirical research methods: case studies, literature reviews, simulations, and empirical evaluations. Results: This thesis provides six main results. First, it proposes an architecture framework for automated experimentation that can be used with different types of experimental designs in both embedded systems and web-facing systems. Second, it proposes a new experimentation process to capture the details of a trustworthy experimentation process that can be used as the basis for an automated experimentation process. Third, it identifies the restrictions and pitfalls of different multi-armed bandit algorithms for automating experiments in industry. This thesis also proposes a set of guidelines to help practitioners select a technique that minimizes the occurrence of these pitfalls. Fourth, it proposes statistical models to analyze optimization algorithms that can be used in automated experimentation. Fifth, it identifies the key challenges faced by embedded systems companies when adopting controlled experimentation, and we propose a set of strategies to address these challenges. Sixth, it identifies experimentation techniques and proposes a new continuous experimentation model for mission-critical and business-to-business. Conclusion: The results presented in this thesis indicate that the trustworthiness in the experimentation process and the selection of algorithms still need to be addressed before automated experimentation can be used at scale in industry. The embedded systems industry faces challenges in adopting experimentation as part of its development process. In part, this is due to the low number of users and devices that can be used in experiments and the diversity of the required experimental designs for each new situation. This limitation increases both the complexity of the experimentation process and the number of techniques used to address this constraint

    Planning Algorithms for Multi-Robot Active Perception

    Get PDF
    A fundamental task of robotic systems is to use on-board sensors and perception algorithms to understand high-level semantic properties of an environment. These semantic properties may include a map of the environment, the presence of objects, or the parameters of a dynamic field. Observations are highly viewpoint dependent and, thus, the performance of perception algorithms can be improved by planning the motion of the robots to obtain high-value observations. This motivates the problem of active perception, where the goal is to plan the motion of robots to improve perception performance. This fundamental problem is central to many robotics applications, including environmental monitoring, planetary exploration, and precision agriculture. The core contribution of this thesis is a suite of planning algorithms for multi-robot active perception. These algorithms are designed to improve system-level performance on many fronts: online and anytime planning, addressing uncertainty, optimising over a long time horizon, decentralised coordination, robustness to unreliable communication, predicting plans of other agents, and exploiting characteristics of perception models. We first propose the decentralised Monte Carlo tree search algorithm as a generally-applicable, decentralised algorithm for multi-robot planning. We then present a self-organising map algorithm designed to find paths that maximally observe points of interest. Finally, we consider the problem of mission monitoring, where a team of robots monitor the progress of a robotic mission. A spatiotemporal optimal stopping algorithm is proposed and a generalisation for decentralised monitoring. Experimental results are presented for a range of scenarios, such as marine operations and object recognition. Our analytical and empirical results demonstrate theoretically-interesting and practically-relevant properties that support the use of the approaches in practice

    Route Planning and Operator Allocation in Robot Fleets

    Get PDF
    In this thesis, we address various challenges related to optimal planning and task allocation in a robot fleet supervised by remote human operators. The overarching goal is to enhance the performance and efficiency of the robot fleets by planning routes and scheduling operator assistance while accounting for limited human availability. The thesis consists of three main problems, each of which focuses on a specific aspect of the system. The first problem pertains to optimal planning for a robot in a collaborative human-robot team, where the human supervisor is intermittently available to assist the robot to complete its tasks faster. Specifically, we address the challenge of computing the fastest route between two configurations in an environment with time constraints on how long the robot can wait for assistance at intermediate configurations. We consider the application of robot navigation in a city environment, where different routes can have distinct speed limits and different time constraints on how long a robot is allowed to wait. Our proposed approach utilizes the concepts of budget and critical departure times, enabling optimal solution and enhanced scalability compared to existing methods. Extensive comparisons with baseline algorithms on a city road network demonstrate its effectiveness and ability to achieve high-quality solutions. Furthermore, we extend the problem to the multi-robot case, where the challenge lies in prioritizing robots when multiple service requests arrive simultaneously. To address this challenge, we present a greedy algorithm that efficiently prioritizes service requests in a batch and has a remarkably good performance compared to the optimal solution. The next problem focuses on allocating human operators to robots in a fleet, considering each robot's specified route and the potential for failures and getting stuck. Conventional techniques used to solve such problems face scalability issues due to exponential growth of state and action spaces with the number of robots and operators. To overcome these, we derive conditions for a technical requirement called indexability, thereby enabling the use of the Whittle index heuristic. Our key insight is to leverage the structure of the value function of individual robots, resulting in conditions that can be easily verified separately for each state of each robot. We apply these conditions to two types of transitions commonly seen in supervised robot fleets. Through numerical simulations, we demonstrate the efficacy of Whittle index policy as a near-optimal scalable approach that outperforms existing scalable methods. Finally, we investigate the impact of interruptions on human supervisors overseeing a fleet of robots. Human supervisors in such systems are primarily responsible for monitoring robots, but can also be assigned with secondary tasks. These tasks can act as interruptions and can be categorized as either intrinsic, i.e., being directly related to the monitoring task, or extrinsic, i.e., being unrelated. Through a user study involving 3939 participants, the findings reveal that task performance remains relatively unaffected by interruptions, and is primarily dependent on the number of robots being monitored. However, extrinsic interruptions led to a significant increase in perceived workload, creating challenges in switching between tasks. These results highlight the importance of managing user workload by limiting extrinsic interruptions in such supervision systems. Overall, this thesis contributes to the field of robot planning and operator allocation in collaborative human-robot teams. By incorporating human assistance, addressing scalability challenges, and understanding the impact of interruptions, we aim to enhance the performance and usability of robot fleets. Our work introduces optimal planning methods and efficient allocation strategies, empowering the seamless operation of robot fleets in real-world scenarios. Additionally, we provide valuable insights into user workload, shedding light on the interactions between humans and robots in such systems. We hope that our research promotes the widespread adoption of robot fleets and facilitates their integration into various domains, ultimately driving advancements in the field

    In situ Distributed Genetic Programming: An Online Learning Framework for Resource Constrained Networked Devices

    Get PDF
    This research presents In situ Distributed Genetic Programming (IDGP) as a framework for distributively evolving logic while attempting to maintain acceptable average performance on highly resource-constrained embedded networked devices. The framework is motivated by the proliferation of devices employing microcontrollers with communications capability and the absence of online learning approaches that can evolve programs for them. Swarm robotics, Internet of Things (IoT) devices including smart phones, and arguably the most constrained of the embedded systems, Wireless Sensor Networks (WSN) motes, all possess the capabilities necessary for the distributed evolution of logic - specifically the abilities of sensing, computing, actuation and communications. Genetic programming (GP) is a mechanism that can evolve logic for these devices using their “native” logic representation (i.e. programs) and so technically GP could evolve any behaviour that can be coded on the device. IDGP is designed, implemented, demonstrated and analysed as a framework for evolving logic via genetic programming on highly resource-constrained networked devices in real-world environments while achieving acceptable average performance. Designed with highly resource-constrained devices in mind, IDGP provides a guide for those wishing to implement genetic programming on such systems. Furthermore, an implementation on mote class devices is demonstrated to evolve logic for a time-varying sense-compute-act problem and another problem requiring the evolution of primitive communications. Distributed evolution of logic is also achieved by employing the Island Model architecture, and a comparison of individual and distributed evolution (with the same and slightly different goals) presented. This demonstrates the advantage of leveraging the fact that such devices often reside within networks of devices experiencing similar conditions. Since GP is a population-based metaheuristic which relies on the diversity of the population to achieve learning, many, if not most, programs within the population exhibit poor performance. As such, the average observed performance (pool fitness) of the population using the standard GP learning mechanism is unlikely to be acceptable for online learning scenarios. This is suspected to be the reason why no previous attempts have been made to deploy standard GP as an online learning approach. Nonetheless, the benefits of GP for evolving logic on such devices are compelling and motivated the design of a novel satisficing heuristic called Fitness Importance (FI). FI is population-based heuristic used to bias the evaluation of candidate solutions such that an “acceptable” average fitness (AAF) is achieved while also achieving ongoing, though diminished, learning capacity. This trade off motivated further investigation into whether dynamically adjusting the average performance in response to AAF would be superior to a constant, balanced, performing-learning approach. Dynamic and constant strategies were compared on a simple problem where the AAF target was changed during evolution, revealing that dynamically tracking the AAF target can yield a higher success rate in meeting the AAF. The combination of IDGP and FI offers a novel approach for achieving online learning with GP on highly resource-constrained embedded systems. Furthermore, it simultaneously considers the acceptable average performance of the system which may change during the operational lifetime. This approach could be applied to swarm and cooperative robot systems, WSN motes or IoT devices allowing them to cooperatively learn and adapt their logic locally to meet dynamic performance requirements

    Towards Automated Experiments in Software Intensive Systems

    Get PDF
    Context: Delivering software that has value to customers is a primary concern of every software company. One of the techniques to continuously validate and deliver value in online software systems is the use of controlled experiments. The time cost of each experiment iteration, the increasing growth in the development organization to run experiments and the need for a more automated and systematic approach is leading companies to look for different techniques to automate the experimentation process. Objective: The overall objective of this thesis is to analyze how to automate different types of experiments and how companies can support and optimize their systems through automated experiments. This thesis explores the topic of automated online experiments from the perspectives of the software architecture, the algorithms for the experiment execution and the experimentation process, and focuses on two main application domains: the online and the embedded systems domain. Method: To achieve the objective, we conducted this research in close collaboration with industry using a combination of different empirical research methods: case studies, literature reviews, simulations and empirical evaluations. Results and conclusions: This thesis provides five main results. First, we propose an architecture framework for automated experimentation that can be used with different types of experimental designs in both embedded systems and web-facing systems. Second, we identify the key challenges faced by embedded systems companies when adopting controlled experimentation and we propose a set of strategies to address these challenges. Third, we develop a new algorithm for online experiments. Fourth, we identify restrictions and pitfalls of different algorithms for automating experiments in industry and we propose a set of guidelines to help practitioners select a technique that minimizes the occurrence of these pitfalls. Fifth, we propose a new experimentation process to capture the details of a trustworthy experimentation process that can be used as basis for an automated experimentation process. Future work: In future work, we plan to investigate how embedded systems can incorporate experiments in their development process without compromising existing real-time and safety requirements. We also plan to analyze the impact and costs of automating the different parts of the experimentation process

    Evolutionary and Computational Advantages of Neuromodulated Plasticity

    Get PDF
    The integration of modulatory neurons into evolutionary artificial neural networks is proposed here. A model of modulatory neurons was devised to describe a plasticity mechanism at the low level of synapses and neurons. No initial assumptions were made on the network structures or on the system level dynamics. The work of this thesis studied the outset of high level system dynamics that emerged employing the low level mechanism of neuromodulated plasticity. Fully-fledged control networks were designed by simulated evolution: an evolutionary algorithm could evolve networks with arbitrary size and topology using standard and modulatory neurons as building blocks. A set of dynamic, reward-based environments was implemented with the purpose of eliciting the outset of learning and memory in networks. The evolutionary time and the performance of solutions were compared for networks that could or could not use modulatory neurons. The experimental results demonstrated that modulatory neurons provide an evolutionary advantage that increases with the complexity of the control problem. Networks with modulatory neurons were also observed to evolve alternative neural control structures with respect to networks without neuromodulation. Different network topologies were observed to lead to a computational advantage such as faster input-output signal processing. The evolutionary and computational advantages induced by modulatory neurons strongly suggest the important role of neuromodulated plasticity for the evolution of networks that require temporal neural dynamics, adaptivity and memory functions
    • …
    corecore