22 research outputs found

    Nonlinear hyperspectral unmixing: strategies for nonlinear mixture detection, endmember estimation and band-selection

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Elétrica, Florianópolis, 2016.Abstract : Mixing phenomena in hyperspectral images depend on a variety of factors such as the resolution of observation devices, the properties of materials, and how these materials interact with incident light in the scene. Different parametric and nonparametric models have been considered to address hyperspectral unmixing problems. The simplest one is the linear mixing model. Nevertheless, it has been recognized that mixing phenomena can also be nonlinear. Kernel-based nonlinear mixing models have been applied to unmix spectral information of hyperspectral images when the type of mixing occurring in the scene is too complex or unknown. However, the corresponding nonlinear analysis techniques are necessarily more challenging and complex than those employed for linear unmixing. Within this context, it makes sense to search for different strategies to produce simpler and/or more accurate results. In this thesis, we tackle three distinct parts of the complete spectral unmixing (SU) problem. First, we propose a technique for detecting nonlinearly mixed pixels. The detection approach is based on the comparison of the reconstruction errors using both a Gaussian process regression model and a linear regression model. The two errors are combined into a detection test statistics for which a probability density function can be reasonably approximated. Second, we propose an iterative endmember extraction algorithm to be employed in combination with the detection algorithm. The proposed detect-then-unmix strategy, which consists of extracting endmembers, detecting nonlinearly mixed pixels and unmixing, is tested with synthetic and real images. Finally, we propose two methods for band selection (BS) in the reproducing kernel Hilbert space (RKHS), which lead to a significant reduction of the processing time required by nonlinear unmixing techniques. The first method employs the kernel k-means (KKM) algorithm to find clusters in the RKHS. Each cluster centroid is then associated to the closest mapped spectral vector. The second method is centralized, and it is based upon the coherence criterion, which sets the largest value allowed for correlations between the basis kernel functions characterizing the unmixing model. We show that the proposed BS approach is equivalent to solving a maximum clique problem (MCP), that is, to searching for the largest complete subgraph in a graph. Furthermore, we devise a strategy for selecting the coherence threshold and the Gaussian kernel bandwidth using coherence bounds for linearly independent bases. Simulation results illustrate the efficiency of the proposed method.Imagem hiperespectral (HI) é uma imagem em que cada pixel contém centenas (ou até milhares) de bandas estreitas e contíguas amostradas num amplo domínio do espectro eletromagnético. Sensores hiperespectrais normalmente trocam resolução espacial por resolução espectral devido principalmente a fatores como a distância entre o instrumento e a cena alvo, e limitada capacidade de processamento, transmissão e armazenamento históricas, mas que se tornam cada vez menos problemáticas. Este tipo de imagem encontra ampla utilização em uma gama de aplicações em astronomia, agricultura, imagens biomédicas, geociências, física, vigilância e sensoriamento remoto. A usual baixa resolução espacial de sensores espectrais implica que o que se observa em cada pixel é normalmente uma mistura das assinaturas espectrais dos materiais presentes na cena correspondente (normalmente denominados de endmembers). Assim um pixel em uma imagem hiperespectral não pode mais ser determinado por um tom ou cor mas sim por uma assinatura espectral do material, ou materiais, que se encontram na região analisada. O modelo mais simples e amplamente utilizado em aplicações com imagens hiperespectrais é o modelo linear, no qual o pixel observado é modelado como uma combinação linear dos endmembers. No entanto, fortes evidências de múltiplas reflexões da radiação solar e/ou materiais intimamente misturados, i.e., misturados em nível microscópico, resultam em diversos modelos não-lineares dos quais destacam-se os modelos bilineares, modelos de pós não-linearidade, modelos de mistura íntima e modelos não-paramétricos. Define-se então o problema de desmistura espectral (ou em inglês spectral unmixing - SU), que consiste em determinar as assinaturas espectrais dos endmembers puros presentes em uma cena e suas proporções (denominadas de abundâncias) para cada pixel da imagem. SU é um problema inverso e por natureza cego uma vez que raramente estão disponíveis informações confiáveis sobre o número de endmembers, suas assinaturas espectrais e suas distribuições em uma dada cena. Este problema possui forte conexão com o problema de separação cega de fontes mas difere no fato de que no problema de SU a independência de fontes não pode ser considerada já que as abundâncias são de fato proporções e por isso dependentes (abundâncias são positivas e devem somar 1). A determinação dos endmembers é conhecida como extração de endmembers e a literatura apresenta uma gama de algoritmos com esse propósito. Esses algoritmos normalmente exploram a geometria convexa resultante do modelo linear e da restrições sobre as abundâncias. Quando os endmembers são considerados conhecidos, ou estimados em um passo anterior, o problema de SU torna-se um problema supervisionado, com pares de entrada (endmembers) e saída (pixels), reduzindo-se a uma etapa de inversão, ou regressão, para determinar as proporções dos endmembers em cada pixel. Quando modelos não-lineares são considerados, a literatura apresenta diversas técnicas que podem ser empregadas dependendo da disponibilidade de informações sobre os endmembers e sobre os modelos que regem a interação entre a luz e os materiais numa dada cena. No entanto, informações sobre o tipo de mistura presente em cenas reais são raramente disponíveis. Nesse contexto, métodos kernelizados, que assumem modelos não-paramétricos, têm sido especialmente bem sucedidos quando aplicados ao problema de SU. Dentre esses métodos destaca-se o SK-Hype, que emprega a teoria de mínimos quadrados-máquinas de vetores de suporte (LS-SVM), numa abordagem que considera um modelo linear com uma flutuação não-linear representada por uma função pertencente a um espaço de Hilbert de kernel reprodutivos (RKHS). Nesta tese de doutoramento diferentes problemas foram abordados dentro do processo de SU de imagens hiperespectrais não-lineares como um todo. Contribuições foram dadas para a detecção de misturas não-lineares, estimação de endmembers quando uma parte considerável da imagem possui misturas não-lineares, e seleção de bandas no espaço de Hilbert de kernels reprodutivos (RKHS). Todos os métodos foram testados através de simulações com dados sintéticos e reais, e considerando unmixing supervisionado e não-supervisionado. No Capítulo 4, um método semi-paramétrico de detecção de misturas não-lineares é apresentado para imagens hiperespectrais. Esse detector compara a performance de dois modelos: um linear paramétrico, usando mínimos-quadrados (LS), e um não-linear não-paramétrico usando processos Gaussianos. A idéia da utilização de modelos não-paramétricos se conecta com o fato de que na prática pouco se sabe sobre a real natureza da não-linearidade presente na cena. Os erros de ajuste desses modelos são então comparados em uma estatística de teste para a qual é possível aproximar a distribuição na hipótese de misturas lineares e, assim, estimar um limiar de detecção para uma dada probabilidade de falso-alarme. A performance do detector proposto foi estudada considerando problemas supervisionados e não-supervisionados, sendo mostrado que a melhoria obtida no desempenho SU utilizando o detector proposto é estatisticamente consistente. Além disso, um grau de não-linearidade baseado nas energias relativas das contribuições lineares e não-lineares do processo de mistura foi definido para quantificar a importância das parcelas linear e não-linear dos modelos. Tal definição é importante para uma correta avaliação dos desempenhos relativos de diferentes estratégias de detecção de misturas não-lineares. No Capítulo 5 um algoritmo iterativo foi proposto para a estimação de endmembers como uma etapa de pré-processamento para problemas SU não supervisionados. Esse algoritmo intercala etapas de detecção de misturas não-lineares e estimação de endmembers de forma iterativa, na qual uma etapa de estimação de endmembers é seguida por uma etapa de detecção, na qual uma parcela dos pixels mais não-lineares é descartada. Esse processo é repetido por um número máximo de execuções ou até um critério de parada ser atingido. Demonstra-se que o uso combinado do detector proposto com um algoritmo de estimação de endmembers leva a melhores resultados de SU quando comparado com soluções do estado da arte. Simulações utilizando diferentes cenários corroboram as conclusões. No Capítulo 6 dois métodos para SU não-linear de imagens hiperespectrais, que empregam seleção de bandas (BS) diretamente no espaço de Hilbert de kernels reprodutivos (RKHS), são apresentados. O primeiro método utiliza o algoritmo Kernel K-Means (KKM) para encontrar clusters diretamente no RKHS onde cada centroide é então associada ao vetor espectral mais próximo. O segundo método é centralizado e baseado no critério de coerência, que incorpora uma medida da qualidade do dicionário no RKHS para a SU não-linear. Essa abordagem centralizada é equivalente a resolver um problema de máximo clique (MCP). Contrariamente a outros métodos concorrentes que não incluem uma escolha eficiente dos parâmetros do modelo, o método proposto requer apenas uma estimativa inicial do número de bandas selecionadas. Os resultados das simulações empregando dados, tanto sintéticos como reais, ilustram a qualidade dos resultados de unmixing obtidos com os métodos de BS propostos. Ao utilizar o SK-Hype, para um número reduzido de bandas, são obtidas estimativas de abundância tão precisas quanto aquelas obtidas utilizando o método SK-Hype com todo o espectro disponível, mas com uma pequena fração do custo computacional

    Nonlinear Unmixing of Hyperspectral Data Based on a Linear-Mixture/Nonlinear-Fluctuation Model

    Full text link

    Analyse de séries temporelles d’images à moyenne résolution spatiale : reconstruction de profils de LAI, démélangeage : application pour le suivi de la végétation sur des images MODIS

    Get PDF
    This PhD dissertation is concerned with time series analysis for medium spatial resolution (MSR) remote sensing images. The main advantage of MSR data is their high temporal rate which allows to monitor land use. However, two main problems arise with such data. First, because of cloud coverage and bad acquisition conditions, the resulting time series are often corrupted and not directly exploitable. Secondly, pixels in medium spatial resolution images are often “mixed” in the sense that the spectral response is a combination of the response of “pure” elements.These two problems are addressed in this PhD. First, we propose a data assimilation technique able to recover consistent time series of Leaf Area Index from corrupted MODIS sequences. To this end, a plant growth model, namely GreenLab, is used as a dynamical constraint. Second, we propose a new and efficient unmixing technique for time series. It is in particular based on the use of “elastic” kernels able to properly compare time series shifted in time or of various lengths.Experimental results are shown both on synthetic and real data and demonstrate the efficiency of the proposed methodologies.Cette thèse s’intéresse à l’analyse de séries temporelles d’images satellites à moyenne résolution spatiale. L’intérêt principal de telles données est leur haute répétitivité qui autorise des analyses de l’usage des sols. Cependant, deux problèmes principaux subsistent avec de telles données. En premier lieu, en raison de la couverture nuageuse, des mauvaises conditions d’acquisition, ..., ces données sont souvent très bruitées. Deuxièmement, les pixels associés à la moyenne résolution spatiale sont souvent “mixtes” dans la mesure où leur réponse spectrale est une combinaison de la réponse de plusieurs éléments “purs”. Ces deux problèmes sont abordés dans cette thèse. Premièrement, nous proposons une technique d’assimilation de données capable de recouvrer des séries temporelles cohérentes de LAI (Leaf Area Index) à partir de séquences d’images MODIS bruitées. Pour cela, le modèle de croissance de plantes GreenLab estutilisé. En second lieu, nous proposons une technique originale de démélangeage, qui s’appuie notamment sur des noyaux “élastiques” capables de gérer les spécificités des séries temporelles (séries de taille différentes, décalées dans le temps, ...)Les résultats expérimentaux, sur des données synthétiques et réelles, montrent de bonnes performances des méthodologies proposées

    Low-Rank and Sparse Decomposition for Hyperspectral Image Enhancement and Clustering

    Get PDF
    In this dissertation, some new algorithms are developed for hyperspectral imaging analysis enhancement. Tensor data format is applied in hyperspectral dataset sparse and low-rank decomposition, which could enhance the classification and detection performance. And multi-view learning technique is applied in hyperspectral imaging clustering. Furthermore, kernel version of multi-view learning technique has been proposed, which could improve clustering performance. Most of low-rank and sparse decomposition algorithms are based on matrix data format for HSI analysis. As HSI contains high spectral dimensions, tensor based extended low-rank and sparse decomposition (TELRSD) is proposed in this dissertation for better performance of HSI classification with low-rank tensor part, and HSI detection with sparse tensor part. With this tensor based method, HSI is processed in 3D data format, and information between spectral bands and pixels maintain integrated during decomposition process. This proposed algorithm is compared with other state-of-art methods. And the experiment results show that TELRSD has the best performance among all those comparison algorithms. HSI clustering is an unsupervised task, which aims to group pixels into different groups without labeled information. Low-rank sparse subspace clustering (LRSSC) is the most popular algorithms for this clustering task. The spatial-spectral based multi-view low-rank sparse subspace clustering (SSMLC) algorithms is proposed in this dissertation, which extended LRSSC with multi-view learning technique. In this algorithm, spectral and spatial views are created to generate multi-view dataset of HSI, where spectral partition, morphological component analysis (MCA) and principle component analysis (PCA) are applied to create others views. Furthermore, kernel version of SSMLC (k-SSMLC) also has been investigated. The performance of SSMLC and k-SSMLC are compared with sparse subspace clustering (SSC), low-rank sparse subspace clustering (LRSSC), and spectral-spatial sparse subspace clustering (S4C). It has shown that SSMLC could improve the performance of LRSSC, and k-SSMLC has the best performance. The spectral clustering has been proved that it equivalent to non-negative matrix factorization (NMF) problem. In this case, NMF could be applied to the clustering problem. In order to include local and nonlinear features in data source, orthogonal NMF (ONMF), graph-regularized NMF (GNMF) and kernel NMF (k-NMF) has been proposed for better clustering performance. The non-linear orthogonal graph NMF combine both kernel, orthogonal and graph constraints in NMF (k-OGNMF), which push up the clustering performance further. In the HSI domain, kernel multi-view based orthogonal graph NMF (k-MOGNMF) is applied for subspace clustering, where k-OGNMF is extended with multi-view algorithm, and it has better performance and computation efficiency

    Semi-supervised and unsupervised kernel-based novelty detection with application to remote sensing images

    Get PDF
    The main challenge of new information technologies is to retrieve intelligible information from the large volume of digital data gathered every day. Among the variety of existing data sources, the satellites continuously observing the surface of the Earth are key to the monitoring of our environment. The new generation of satellite sensors are tremendously increasing the possibilities of applications but also increasing the need for efficient processing methodologies in order to extract information relevant to the users' needs in an automatic or semi-automatic way. This is where machine learning comes into play to transform complex data into simplified products such as maps of land-cover changes or classes by learning from data examples annotated by experts. These annotations, also called labels, may actually be difficult or costly to obtain since they are established on the basis of ground surveys. As an example, it is extremely difficult to access a region recently flooded or affected by wildfires. In these situations, the detection of changes has to be done with only annotations from unaffected regions. In a similar way, it is difficult to have information on all the land-cover classes present in an image while being interested in the detection of a single one of interest. These challenging situations are called novelty detection or one-class classification in machine learning. In these situations, the learning phase has to rely only on a very limited set of annotations, but can exploit the large set of unlabeled pixels available in the images. This setting, called semi-supervised learning, allows significantly improving the detection. In this Thesis we address the development of methods for novelty detection and one-class classification with few or no labeled information. The proposed methodologies build upon the kernel methods, which take place within a principled but flexible framework for learning with data showing potentially non-linear feature relations. The thesis is divided into two parts, each one having a different assumption on the data structure and both addressing unsupervised (automatic) and semi-supervised (semi-automatic) learning settings. The first part assumes the data to be formed by arbitrary-shaped and overlapping clusters and studies the use of kernel machines, such as Support Vector Machines or Gaussian Processes. An emphasis is put on the robustness to noise and outliers and on the automatic retrieval of parameters. Experiments on multi-temporal multispectral images for change detection are carried out using only information from unchanged regions or none at all. The second part assumes high-dimensional data to lie on multiple low dimensional structures, called manifolds. We propose a method seeking a sparse and low-rank representation of the data mapped in a non-linear feature space. This representation allows us to build a graph, which is cut into several groups using spectral clustering. For the semi-supervised case where few labels of one class of interest are available, we study several approaches incorporating the graph information. The class labels can either be propagated on the graph, constrain spectral clustering or used to train a one-class classifier regularized by the given graph. Experiments on the unsupervised and oneclass classification of hyperspectral images demonstrate the effectiveness of the proposed approaches

    Kernel Feature Extraction Methods for Remote Sensing Data Analysis

    Get PDF
    Technological advances in the last decades have improved our capabilities of collecting and storing high data volumes. However, this makes that in some fields, such as remote sensing several problems are generated in the data processing due to the peculiar characteristics of their data. High data volume, high dimensionality, heterogeneity and their nonlinearity, make that the analysis and extraction of relevant information from these images could be a bottleneck for many real applications. The research applying image processing and machine learning techniques along with feature extraction, allows the reduction of the data dimensionality while keeps the maximum information. Therefore, developments and applications of feature extraction methodologies using these techniques have increased exponentially in remote sensing. This improves the data visualization and the knowledge discovery. Several feature extraction methods have been addressed in the literature depending on the data availability, which can be classified in supervised, semisupervised and unsupervised. In particular, feature extraction can use in combination with kernel methods (nonlinear). The process for obtaining a space that keeps greater information content is facilitated by this combination. One of the most important properties of the combination is that can be directly used for general tasks including classification, regression, clustering, ranking, compression, or data visualization. In this Thesis, we address the problems of different nonlinear feature extraction approaches based on kernel methods for remote sensing data analysis. Several improvements to the current feature extraction methods are proposed to transform the data in order to make high dimensional data tasks easier, such as classification or biophysical parameter estimation. This Thesis focus on three main objectives to reach these improvements in the current feature extraction methods: The first objective is to include invariances into supervised kernel feature extraction methods. Throughout these invariances it is possible to generate virtual samples that help to mitigate the problem of the reduced number of samples in supervised methods. The proposed algorithm is a simple method that essentially generates new (synthetic) training samples from available labeled samples. These samples along with original samples should be used in feature extraction methods obtaining more independent features between them that without virtual samples. The introduction of prior knowledge by means of the virtual samples could obtain classification and biophysical parameter estimation methods more robust than without them. The second objective is to use the generative kernels, i.e. probabilistic kernels, that directly learn by means of clustering techniques from original data by finding local-to-global similarities along the manifold. The proposed kernel is useful for general feature extraction purposes. Furthermore, the kernel attempts to improve the current methods because the kernel not only contains labeled data information but also uses the unlabeled information of the manifold. Moreover, the proposed kernel is parameter free in contrast with the parameterized functions such as, the radial basis function (RBF). Using probabilistic kernels is sought to obtain new unsupervised and semisupervised methods in order to reduce the number and cost of labeled data in remote sensing. Third objective is to develop new kernel feature extraction methods for improving the features obtained by the current methods. Optimizing the functional could obtain improvements in new algorithm. For instance, the Optimized Kernel Entropy Component Analysis (OKECA) method. The method is based on the Independent Component Analysis (ICA) framework resulting more efficient than the standard Kernel Entropy Component Analysis (KECA) method in terms of dimensionality reduction. In this Thesis, the methods are focused on remote sensing data analysis. Nevertheless, feature extraction methods are used to analyze data of several research fields whereas data are multidimensional. For these reasons, the results are illustrated into experimental sequence. First, the projections are analyzed by means of Toy examples. The algorithms are tested through standard databases with supervised information to proceed to the last step, the analysis of remote sensing images by the proposed methods
    corecore