29 research outputs found

    Investigating the effects of a combined spatial and spectral dimensionality reduction approach for aerial hyperspectral target detection applications

    Get PDF
    Target detection and classification is an important application of hyperspectral imaging in remote sensing. A wide range of algorithms for target detection in hyperspectral images have been developed in the last few decades. Given the nature of hyperspectral images, they exhibit large quantities of redundant information and are therefore compressible. Dimensionality reduction is an effective means of both compressing and denoising data. Although spectral dimensionality reduction is prevalent in hyperspectral target detection applications, the spatial redundancy of a scene is rarely exploited. By applying simple spatial masking techniques as a preprocessing step to disregard pixels of definite disinterest, the subsequent spectral dimensionality reduction process is simpler, less costly and more informative. This paper proposes a processing pipeline to compress hyperspectral images both spatially and spectrally before applying target detection algorithms to the resultant scene. The combination of several different spectral dimensionality reduction methods and target detection algorithms, within the proposed pipeline, are evaluated. We find that the Adaptive Cosine Estimator produces an improved F1 score and Matthews Correlation Coefficient when compared to unprocessed data. We also show that by using the proposed pipeline the data can be compressed by over 90% and target detection performance is maintained

    Techniques for automatic large scale change analysis of temporal multispectral imagery

    Get PDF
    Change detection in remotely sensed imagery is a multi-faceted problem with a wide variety of desired solutions. Automatic change detection and analysis to assist in the coverage of large areas at high resolution is a popular area of research in the remote sensing community. Beyond basic change detection, the analysis of change is essential to provide results that positively impact an image analyst\u27s job when examining potentially changed areas. Present change detection algorithms are geared toward low resolution imagery, and require analyst input to provide anything more than a simple pixel level map of the magnitude of change that has occurred. One major problem with this approach is that change occurs in such large volume at small spatial scales that a simple change map is no longer useful. This research strives to create an algorithm based on a set of metrics that performs a large area search for change in high resolution multispectral image sequences and utilizes a variety of methods to identify different types of change. Rather than simply mapping the magnitude of any change in the scene, the goal of this research is to create a useful display of the different types of change in the image. The techniques presented in this dissertation are used to interpret large area images and provide useful information to an analyst about small regions that have undergone specific types of change while retaining image context to make further manual interpretation easier. This analyst cueing to reduce information overload in a large area search environment will have an impact in the areas of disaster recovery, search and rescue situations, and land use surveys among others. By utilizing a feature based approach founded on applying existing statistical methods and new and existing topological methods to high resolution temporal multispectral imagery, a novel change detection methodology is produced that can automatically provide useful information about the change occurring in large area and high resolution image sequences. The change detection and analysis algorithm developed could be adapted to many potential image change scenarios to perform automatic large scale analysis of change

    Detection and classification of non-stationary signals using sparse representations in adaptive dictionaries

    Get PDF
    Automatic classification of non-stationary radio frequency (RF) signals is of particular interest in persistent surveillance and remote sensing applications. Such signals are often acquired in noisy, cluttered environments, and may be characterized by complex or unknown analytical models, making feature extraction and classification difficult. This thesis proposes an adaptive classification approach for poorly characterized targets and backgrounds based on sparse representations in non-analytical dictionaries learned from data. Conventional analytical orthogonal dictionaries, e.g., Short Time Fourier and Wavelet Transforms, can be suboptimal for classification of non-stationary signals, as they provide a rigid tiling of the time-frequency space, and are not specifically designed for a particular signal class. They generally do not lead to sparse decompositions (i.e., with very few non-zero coefficients), and use in classification requires separate feature selection algorithms. Pursuit-type decompositions in analytical overcomplete (non-orthogonal) dictionaries yield sparse representations, by design, and work well for signals that are similar to the dictionary elements. The pursuit search, however, has a high computational cost, and the method can perform poorly in the presence of realistic noise and clutter. One such overcomplete analytical dictionary method is also analyzed in this thesis for comparative purposes. The main thrust of the thesis is learning discriminative RF dictionaries directly from data, without relying on analytical constraints or additional knowledge about the signal characteristics. A pursuit search is used over the learned dictionaries to generate sparse classification features in order to identify time windows that contain a target pulse. Two state-of-the-art dictionary learning methods are compared, the K-SVD algorithm and Hebbian learning, in terms of their classification performance as a function of dictionary training parameters. Additionally, a novel hybrid dictionary algorithm is introduced, demonstrating better performance and higher robustness to noise. The issue of dictionary dimensionality is explored and this thesis demonstrates that undercomplete learned dictionaries are suitable for non-stationary RF classification. Results on simulated data sets with varying background clutter and noise levels are presented. Lastly, unsupervised classification with undercomplete learned dictionaries is also demonstrated in satellite imagery analysis

    Convolutional Neural Networks - Generalizability and Interpretations

    Get PDF

    Spectral image utility for target detection applications

    Get PDF
    In a wide range of applications, images convey useful information about scenes. The “utility” of an image is defined with reference to the specific task that an observer seeks to accomplish, and differs from the “fidelity” of the image, which seeks to capture the ability of the image to represent the true nature of the scene. In remote sensing of the earth, various means of characterizing the utility of satellite and airborne imagery have evolved over the years. Recent advances in the imaging modality of spectral imaging have enabled synoptic views of the earth at many finely sampled wavelengths over a broad spectral band. These advances challenge the ability of traditional earth observation image utility metrics to describe the rich information content of spectral images. Traditional approaches to image utility that are based on overhead panchromatic image interpretability by a human observer are not applicable to spectral imagery, which requires automated processing. This research establishes the context for spectral image utility by reviewing traditional approaches and current methods for describing spectral image utility. It proposes a new approach to assessing and predicting spectral image utility for the specific application of target detection. We develop a novel approach to assessing the utility of any spectral image using the target-implant method. This method is not limited by the requirements of traditional target detection performance assessment, which need ground truth and an adequate number of target pixels in the scene. The flexibility of this approach is demonstrated by assessing the utility of a wide range of real and simulated spectral imagery over a variety ii of target detection scenarios. The assessed image utility may be summarized to any desired level of specificity based on the image analysis requirements. We also present an approach to predicting spectral image utility that derives statistical parameters directly from an image and uses them to model target detection algorithm output. The image-derived predicted utility is directly comparable to the assessed utility and the accuracy of prediction is shown to improve with statistical models that capture the non-Gaussian behavior of real spectral image target detection algorithm outputs. The sensitivity of the proposed spectral image utility metric to various image chain parameters is examined in detail, revealing characteristics, requirements, and limitations that provide insight into the relative importance of parameters in the image utility. The results of these investigations lead to a better understanding of spectral image information vis-à-vis target detection performance that will hopefully prove useful to the spectral imagery analysis community and represent a step towards quantifying the ability of a spectral image to satisfy information exploitation requirements

    FINE SCALE MAPPING OF LAURENTIAN MIXED FOREST NATURAL HABITAT COMMUNITIES USING MULTISPECTRAL NAIP AND UAV DATASETS COMBINED WITH MACHINE LEARNING METHODS

    Get PDF
    Natural habitat communities are an important element of any forest ecosystem. Mapping and monitoring Laurentian Mixed Forest natural communities using high spatial resolution imagery is vital for management and conservation purposes. This study developed integrated spatial, spectral and Machine Learning (ML) approaches for mapping complex vegetation communities. The study utilized ultra-high and high spatial resolution National Agriculture Imagery Program (NAIP) and Unmanned Aerial Vehicle (UAV) datasets, and Digital Elevation Model (DEM). Complex natural vegetation community habitats in the Laurentian Mixed Forest of the Upper Midwest. A detailed workflow is presented to effectively process UAV imageries in a dense forest environment where the acquisition of ground control points (GCPs) is extremely difficult. Statistical feature selection methods such as Joint Mutual Information Maximization (JMIM) which is not that widely used in the natural resource field and variable importance (varImp) were used to discriminate spectrally similar habitat communities. A comprehensive approach to training set delineation was implemented including the use of Principal Components Analysis (PCA), Independent Components Analysis (ICA), soils data, and expert image interpretation. The developed approach resulted in robust training sets to delineate and accurately map natural community habitats. Three ML algorithms were implemented Random Forest (RF), Support Vector Machine (SVM), and Averaged Neural Network (avNNet). RF outperformed SVM and avNNet. Overall RF accuracies across the three study sites ranged from 79.45-87.74% for NAIP and 87.31-93.74% for the UAV datasets. Different ancillary datasets including spectral enhancement and image transformation techniques (PCA and ICA), GLCM-Texture, spectral indices, and topography features (elevation, slope, and aspect) were evaluated using the JMIM and varImp feature selection methods, overall accuracy assessment, and kappa calculations. The robustness of the workflow was evaluated with three study sites which are geomorphologically unique and contain different natural habitat communities. This integrated approach is recommended for accurate natural habitat community classification in ecologically complex landscapes

    Air Force Institute of Technology Research Report 2010

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physic

    Mineral identification using data-mining in hyperspectral infrared imagery

    Get PDF
    Les applications de l’imagerie infrarouge dans le domaine de la géologie sont principalement des applications hyperspectrales. Elles permettent entre autre l’identification minérale, la cartographie, ainsi que l’estimation de la portée. Le plus souvent, ces acquisitions sont réalisées in-situ soit à l’aide de capteurs aéroportés, soit à l’aide de dispositifs portatifs. La découverte de minéraux indicateurs a permis d’améliorer grandement l’exploration minérale. Ceci est en partie dû à l’utilisation d’instruments portatifs. Dans ce contexte le développement de systèmes automatisés permettrait d’augmenter à la fois la qualité de l’exploration et la précision de la détection des indicateurs. C’est dans ce cadre que s’inscrit le travail mené dans ce doctorat. Le sujet consistait en l’utilisation de méthodes d’apprentissage automatique appliquées à l’analyse (au traitement) d’images hyperspectrales prises dans les longueurs d’onde infrarouge. L’objectif recherché étant l’identification de grains minéraux de petites tailles utilisés comme indicateurs minéral -ogiques. Une application potentielle de cette recherche serait le développement d’un outil logiciel d’assistance pour l’analyse des échantillons lors de l’exploration minérale. Les expériences ont été menées en laboratoire dans la gamme relative à l’infrarouge thermique (Long Wave InfraRed, LWIR) de 7.7m à 11.8 m. Ces essais ont permis de proposer une méthode pour calculer l’annulation du continuum. La méthode utilisée lors de ces essais utilise la factorisation matricielle non négative (NMF). En utlisant une factorisation du premier ordre on peut déduire le rayonnement de pénétration, lequel peut ensuite être comparé et analysé par rapport à d’autres méthodes plus communes. L’analyse des résultats spectraux en comparaison avec plusieurs bibliothèques existantes de données a permis de mettre en évidence la suppression du continuum. Les expérience ayant menés à ce résultat ont été conduites en utilisant une plaque Infragold ainsi qu’un objectif macro LWIR. L’identification automatique de grains de différents matériaux tels que la pyrope, l’olivine et le quartz a commencé. Lors d’une phase de comparaison entre des approches supervisées et non supervisées, cette dernière s’est montrée plus approprié en raison du comportement indépendant par rapport à l’étape d’entraînement. Afin de confirmer la qualité de ces résultats quatre expériences ont été menées. Lors d’une première expérience deux algorithmes ont été évalués pour application de regroupements en utilisant l’approche FCC (False Colour Composite). Cet essai a permis d’observer une vitesse de convergence, jusqu’a vingt fois plus rapide, ainsi qu’une efficacité significativement accrue concernant l’identification en comparaison des résultats de la littérature. Cependant des essais effectués sur des données LWIR ont montré un manque de prédiction de la surface du grain lorsque les grains étaient irréguliers avec présence d’agrégats minéraux. La seconde expérience a consisté, en une analyse quantitaive comparative entre deux bases de données de Ground Truth (GT), nommée rigid-GT et observed-GT (rigide-GT: étiquet manuel de la région, observée-GT:étiquetage manuel les pixels). La précision des résultats était 1.5 fois meilleur lorsque l’on a utlisé la base de données observed-GT que rigid-GT. Pour les deux dernières epxérience, des données venant d’un MEB (Microscope Électronique à Balayage) ainsi que d’un microscopie à fluorescence (XRF) ont été ajoutées. Ces données ont permis d’introduire des informations relatives tant aux agrégats minéraux qu’à la surface des grains. Les résultats ont été comparés par des techniques d’identification automatique des minéraux, utilisant ArcGIS. Cette dernière a montré une performance prometteuse quand à l’identification automatique et à aussi été utilisée pour la GT de validation. Dans l’ensemble, les quatre méthodes de cette thèse représentent des méthodologies bénéfiques pour l’identification des minéraux. Ces méthodes présentent l’avantage d’être non-destructives, relativement précises et d’avoir un faible coût en temps calcul ce qui pourrait les qualifier pour être utilisée dans des conditions de laboratoire ou sur le terrain.The geological applications of hyperspectral infrared imagery mainly consist in mineral identification, mapping, airborne or portable instruments, and core logging. Finding the mineral indicators offer considerable benefits in terms of mineralogy and mineral exploration which usually involves application of portable instrument and core logging. Moreover, faster and more mechanized systems development increases the precision of identifying mineral indicators and avoid any possible mis-classification. Therefore, the objective of this thesis was to create a tool to using hyperspectral infrared imagery and process the data through image analysis and machine learning methods to identify small size mineral grains used as mineral indicators. This system would be applied for different circumstances to provide an assistant for geological analysis and mineralogy exploration. The experiments were conducted in laboratory conditions in the long-wave infrared (7.7μm to 11.8μm - LWIR), with a LWIR-macro lens (to improve spatial resolution), an Infragold plate, and a heating source. The process began with a method to calculate the continuum removal. The approach is the application of Non-negative Matrix Factorization (NMF) to extract Rank-1 NMF and estimate the down-welling radiance and then compare it with other conventional methods. The results indicate successful suppression of the continuum from the spectra and enable the spectra to be compared with spectral libraries. Afterwards, to have an automated system, supervised and unsupervised approaches have been tested for identification of pyrope, olivine and quartz grains. The results indicated that the unsupervised approach was more suitable due to independent behavior against training stage. Once these results obtained, two algorithms were tested to create False Color Composites (FCC) applying a clustering approach. The results of this comparison indicate significant computational efficiency (more than 20 times faster) and promising performance for mineral identification. Finally, the reliability of the automated LWIR hyperspectral infrared mineral identification has been tested and the difficulty for identification of the irregular grain’s surface along with the mineral aggregates has been verified. The results were compared to two different Ground Truth(GT) (i.e. rigid-GT and observed-GT) for quantitative calculation. Observed-GT increased the accuracy up to 1.5 times than rigid-GT. The samples were also examined by Micro X-ray Fluorescence (XRF) and Scanning Electron Microscope (SEM) in order to retrieve information for the mineral aggregates and the grain’s surface (biotite, epidote, goethite, diopside, smithsonite, tourmaline, kyanite, scheelite, pyrope, olivine, and quartz). The results of XRF imagery compared with automatic mineral identification techniques, using ArcGIS, and represented a promising performance for automatic identification and have been used for GT validation. In overall, the four methods (i.e. 1.Continuum removal methods; 2. Classification or clustering methods for mineral identification; 3. Two algorithms for clustering of mineral spectra; 4. Reliability verification) in this thesis represent beneficial methodologies to identify minerals. These methods have the advantages to be a non-destructive, relatively accurate and have low computational complexity that might be used to identify and assess mineral grains in the laboratory conditions or in the field

    Spectral-spatial Feature Extraction for Hyperspectral Image Classification

    Get PDF
    As an emerging technology, hyperspectral imaging provides huge opportunities in both remote sensing and computer vision. The advantage of hyperspectral imaging comes from the high resolution and wide range in the electromagnetic spectral domain which reflects the intrinsic properties of object materials. By combining spatial and spectral information, it is possible to extract more comprehensive and discriminative representation for objects of interest than traditional methods, thus facilitating the basic pattern recognition tasks, such as object detection, recognition, and classification. With advanced imaging technologies gradually available for universities and industry, there is an increased demand to develop new methods which can fully explore the information embedded in hyperspectral images. In this thesis, three spectral-spatial feature extraction methods are developed for salient object detection, hyperspectral face recognition, and remote sensing image classification. Object detection is an important task for many applications based on hyperspectral imaging. While most traditional methods rely on the pixel-wise spectral response, many recent efforts have been put on extracting spectral-spatial features. In the first approach, we extend Itti's visual saliency model to the spectral domain and introduce the spectral-spatial distribution based saliency model for object detection. This procedure enables the extraction of salient spectral features in the scale space, which is related to the material property and spatial layout of objects. Traditional 2D face recognition has been studied for many years and achieved great success. Nonetheless, there is high demand to explore unrevealed information other than structures and textures in spatial domain in faces. Hyperspectral imaging meets such requirements by providing additional spectral information on objects, in completion to the traditional spatial features extracted in 2D images. In the second approach, we propose a novel 3D high-order texture pattern descriptor for hyperspectral face recognition, which effectively exploits both spatial and spectral features in hyperspectral images. Based on the local derivative pattern, our method encodes hyperspectral faces with multi-directional derivatives and binarization function in spectral-spatial space. Compared to traditional face recognition methods, our method can describe distinctive micro-patterns which integrate the spatial and spectral information of faces. Mathematical morphology operations are limited to extracting spatial feature in two-dimensional data and cannot cope with hyperspectral images due to so-called ordering problem. In the third approach, we propose a novel multi-dimensional morphology descriptor, tensor morphology profile~(TMP), for hyperspectral image classification. TMP is a general framework to extract multi-dimensional structures in high-dimensional data. The n-order morphology profile is proposed to work with the n-order tensor, which can capture the inner high order structures. By treating a hyperspectral image as a tensor, it is possible to extend the morphology to high dimensional data so that powerful morphological tools can be used to analyze hyperspectral images with fused spectral-spatial information. At last, we discuss the sampling strategy for the evaluation of spectral-spatial methods in remote sensing hyperspectral image classification. We find that traditional pixel-based random sampling strategy for spectral processing will lead to unfair or biased performance evaluation in the spectral-spatial processing context. When training and testing samples are randomly drawn from the same image, the dependence caused by overlap between them may be artificially enhanced by some spatial processing methods. It is hard to determine whether the improvement of classification accuracy is caused by incorporating spatial information into the classifier or by increasing the overlap between training and testing samples. To partially solve this problem, we propose a novel controlled random sampling strategy for spectral-spatial methods. It can significantly reduce the overlap between training and testing samples and provides more objective and accurate evaluation

    Hyperspectral image representation and processing with binary partition trees

    Get PDF
    The optimal exploitation of the information provided by hyperspectral images requires the development of advanced image processing tools. Therefore, under the title Hyperspectral image representation and Processing with Binary Partition Trees, this PhD thesis proposes the construction and the processing of a new region-based hierarchical hyperspectral image representation: the Binary Partition Tree (BPT). This hierarchical region-based representation can be interpreted as a set of hierarchical regions stored in a tree structure. Hence, the Binary Partition Tree succeeds in presenting: (i) the decomposition of the image in terms of coherent regions and (ii) the inclusion relations of the regions in the scene. Based on region-merging techniques, the construction of BPT is investigated in this work by studying hyperspectral region models and the associated similarity metrics. As a matter of fact, the very high dimensionality and the complexity of the data require the definition of specific region models and similarity measures. Once the BPT is constructed, the fixed tree structure allows implementing efficient and advanced application-dependent techniques on it. The application-dependent processing of BPT is generally implemented through a specific pruning of the tree. Accordingly, some pruning techniques are proposed and discussed according to different applications. This Ph.D is focused in particular on segmentation, object detection and classification of hyperspectral imagery. Experimental results on various hyperspectral data sets demonstrate the interest and the good performances of the BPT representatio
    corecore