236 research outputs found

    Banach-Mazur Games with Simple Winning Strategies

    Get PDF
    We discuss several notions of "simple" winning strategies for Banach-Mazur games on graphs, such as positional strategies, move-counting or length-counting strategies, and strategies with a memory based on finite appearance records (FAR). We investigate classes of Banach-Mazur games that are determined via these kinds of winning strategies. Banach-Mazur games admit stronger determinacy results than classical graph games. For instance, all Banach-Mazur games with omega-regular winning conditions are positionally determined. Beyond the omega-regular winning conditions, we focus here on Muller conditions with infinitely many colours. We investigate the infinitary Muller conditions that guarantee positional determinacy for Banach-Mazur games. Further, we determine classes of such conditions that require infinite memory but guarantee determinacy via move-counting strategies, length-counting strategies, and FAR-strategies. We also discuss the relationships between these different notions of determinacy

    EPE 462-3 - INDUSTRIAL MACHINE VISION NOV 10.

    Get PDF
    We discuss several notions of ‘simple’ winning strategies for Banach-Mazur games on graphs, such as positional strategies, move-counting or length-counting strategies, and strategies with a memory based on finite appearance records (FAR). We investigate classes of Banach-Mazur games that are determined via these kinds of winning strategies. Banach-Mazur games admit stronger determinacy results than classical graph games. For instance, all Banach-Mazur games with ω-regular winning conditions are positionally determined. Beyond the ω-regular winning conditions, we focus here on Muller conditions with infinitely many colours. We investigate the infinitary Muller conditions that guarantee positional determinacy for Banach-Mazur games. Further, we determine classes of such conditions that require infinite memory but guarantee determinacy via move-counting strategies, length-counting strategies, and FAR-strategies. We also discuss the relationships between these different notions of determinacy

    How Good Is a Strategy in a Game with Nature?

    Get PDF
    International audienceWe consider games with two antagonistic players — Éloïse (modelling a program) and Abélard (modelling a byzantine environment) — and a third, unpredictable and uncontrollable player, that we call Nature. Motivated by the fact that the usual probabilistic semantics very quickly leads to undecidability when considering either infinite game graphs or imperfect information, we propose two alternative semantics that leads to decidability where the probabilistic one fails: one based on counting and one based on topology

    2008 Abstracts Collection -- IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science

    Get PDF
    This volume contains the proceedings of the 28th international conference on the Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2008), organized under the auspices of the Indian Association for Research in Computing Science (IARCS)
    corecore