20 research outputs found

    Hierarchical Routing in Low-Power Wireless Networks

    Get PDF
    Steen, M.R. van [Promotor

    On hole approximation algorithms in wireless sensor networks

    Get PDF
    Routing holes in sensor network are regions without operating nodes. They may occur due to several reasons, including cases caused by natural obstacles or disaster suffering areas. Determining the location and shape of holes can help monitor these disaster events (such as volcano, tsunami, etc.) or make smart, early routing decisions for circumventing a hole. However, given the energy limit of sensor nets, the determination and dissemination of the information about the exact shape of a large hole could be unreasonable. Therefore, there are some techniques to approximate a hole by a simpler shape. In this paper, the authors analyze and compare two existing approximation approaches that are considered as the most suitable for the sensor network, namely the grid-based and the convex-hull-based approaches. And a new algorithm of the grid-based approach is also introduced. The performances of all the mentioned algorithms are under analysis and evaluation in both theoretical and experimental perspectives. The findings show that grid-based approach has advantages in saving network energy and providing a finer image of the hole while the convex hull approach is better for making a shorter hole-bypassing the route but not much

    Reliable load-balancing routing for resource-constrained wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) are energy and resource constrained. Energy limitations make it advantageous to balance radio transmissions across multiple sensor nodes. Thus, load balanced routing is highly desirable and has motivated a significant volume of research. Multihop sensor network architecture can also provide greater coverage, but requires a highly reliable and adaptive routing scheme to accommodate frequent topology changes. Current reliability-oriented protocols degrade energy efficiency and increase network latency. This thesis develops and evaluates a novel solution to provide energy-efficient routing while enhancing packet delivery reliability. This solution, a reliable load-balancing routing (RLBR), makes four contributions in the area of reliability, resiliency and load balancing in support of the primary objective of network lifetime maximisation. The results are captured using real world testbeds as well as simulations. The first contribution uses sensor node emulation, at the instruction cycle level, to characterise the additional processing and computation overhead required by the routing scheme. The second contribution is based on real world testbeds which comprises two different TinyOS-enabled senor platforms under different scenarios. The third contribution extends and evaluates RLBR using large-scale simulations. It is shown that RLBR consumes less energy while reducing topology repair latency and supports various aggregation weights by redistributing packet relaying loads. It also shows a balanced energy usage and a significant lifetime gain. Finally, the forth contribution is a novel variable transmission power control scheme which is created based on the experience gained from prior practical and simulated studies. This power control scheme operates at the data link layer to dynamically reduce unnecessarily high transmission power while maintaining acceptable link reliability

    Pervasive service discovery in low-power and lossy networks

    Get PDF
    Pervasive Service Discovery (SD) in Low-power and Lossy Networks (LLNs) is expected to play a major role in realising the Internet of Things (IoT) vision. Such a vision aims to expand the current Internet to interconnect billions of miniature smart objects that sense and act on our surroundings in a way that will revolutionise the future. The pervasiveness and heterogeneity of such low-power devices requires robust, automatic, interoperable and scalable deployment and operability solutions. At the same time, the limitations of such constrained devices impose strict challenges regarding complexity, energy consumption, time-efficiency and mobility. This research contributes new lightweight solutions to facilitate automatic deployment and operability of LLNs. It mainly tackles the aforementioned challenges through the proposition of novel component-based, automatic and efficient SD solutions that ensure extensibility and adaptability to various LLN environments. Building upon such architecture, a first fully-distributed, hybrid pushpull SD solution dubbed EADP (Extensible Adaptable Discovery Protocol) is proposed based on the well-known Trickle algorithm. Motivated by EADPs’ achievements, new methods to optimise Trickle are introduced. Such methods allow Trickle to encompass a wide range of algorithms and extend its usage to new application domains. One of the new applications is concretized in the TrickleSD protocol aiming to build automatic, reliable, scalable, and time-efficient SD. To optimise the energy efficiency of TrickleSD, two mechanisms improving broadcast communication in LLNs are proposed. Finally, interoperable standards-based SD in the IoT is demonstrated, and methods combining zero-configuration operations with infrastructure-based solutions are proposed. Experimental evaluations of the above contributions reveal that it is possible to achieve automatic, cost-effective, time-efficient, lightweight, and interoperable SD in LLNs. These achievements open novel perspectives for zero-configuration capabilities in the IoT and promise to bring the ‘things’ to all people everywhere

    Improving efficiency, usability and scalability in a secure, resource-constrained web of things

    Get PDF

    Abstracting Application Development for Resource Constrained Wireless Sensor Networks

    Get PDF
    Ubiquitous computing is a concept whereby computing is distributed across smart objects surrounding users, creating ambient intelligence. Ubiquitous applications use technologies such as the Internet, sensors, actuators, embedded computers, wireless communication, and new user interfaces. The Internet-of-Things (IoT) is one of the key concepts in the realization of ubiquitous computing, whereby smart objects communicate with each other and the Internet. Further, Wireless Sensor Networks (WSNs) are a sub-group of IoT technologies that consist of geographically distributed devices or nodes, capable of sensing and actuating the environment.WSNs typically contain tens to thousands of nodes that organize and operate autonomously to perform application-dependent sensing and sensor data processing tasks. The projected applications require nodes to be small in physical size and low-cost, and have a long lifetime with limited energy resources, while performing complex computing and communications tasks. As a result, WSNs are complex distributed systems that are constrained by communications, computing and energy resources. WSN functionality is dynamic according to the environment and application requirements. Dynamic multitasking, task distribution, task injection, and software updates are required in field experiments for possibly thousands of nodes functioning in harsh environments.The development of WSN application software requires the abstraction of computing, communication, data access, and heterogeneous sensor data sources to reduce the complexities. Abstractions enable the faster development of new applications with a better reuse of existing software, as applications are composed of high-level tasks that use the services provided by the devices to execute the application logic.The main research question of this thesis is: What abstractions are needed for application development for resource constrained WSNs? This thesis models WSN abstractions with three levels that build on top of each other: 1) node abstraction, 2) network abstraction, and 3) infrastructure abstraction. The node abstraction hides the details in the use of the sensing, communication, and processing hardware. The network abstraction specifies methods of discovering and accessing services, and distributing processing in the network. The infrastructure abstraction unifies different sensing technologies and infrastructure computing platforms.As a contribution, this thesis presents the abstraction model with a review of each abstraction level. Several designs for each of the levels are tested and verified with proofs of concept and analyses of field experiments. The resulting designs consist of an operating system kernel, a software update method, a data unification interface, and all abstraction levels combining abstraction called an embedded cloud.The presented operating system kernel has a scalable overhead and provides a programming approach similar to a desktop computer operating system with threads and processes. An over-the-air update method combines low overhead and robust software updating with application task dissemination. The data unification interface homogenizes the access to the data of heterogeneous sensor networks. A unification model is used for various use cases by mapping everything as measurements. The embedded cloud allows resource constrained WSNs to share services and data, and expand resources with other technologies. The embedded cloud allows the distributed processing of applications according to the available services. The applications are implemented as processes using a hardware independent description language that can be executed on resource constrained WSNs. The lessons of practical field experimenting are analyzed to study the importance of the abstractions. Software complexities encountered in the field experiments highlight the need for suitable abstractions.The results of this thesis are tested using proof of concept implementations on real WSN hardware which is constrained by computing power in the order of a few MIPS, memory sizes of a few kilobytes, and small sized batteries. The results will remain usable in the future, as the vast amount, tight integration, and low-cost of future IoT devices require the combination of complex computation with resource constrained platforms

    Challenges and Solutions for Location-based Routing in Wireless Sensor Networks with Complex Network Topology

    Get PDF
    Complex Network Topologies (CNTs)–network holes and cuts–often occur in practical WSN deployments. Many researchers have acknowledged that CNTs adversely affect the performance of location-based routing and proposed various CNT- aware location-based routing protocols. However, although they aim to address practical issues caused by CNTs, many proposed protocols are either based on idealistic assumptions, require too much resources, or have poor performance. Additionally, proposed protocols are designed only for a single routing primitive–either unicast, multicast, or convergecast. However, as recent WSN applications require diverse traffic patterns, the need for an unified routing framework has ever increased. In this dissertation, we address these main weaknesses in the research on location- based routing. We first propose efficient algorithms for detecting and abstracting CNTs in the network. Using these algorithms, we present our CNT-aware location- based unicast routing protocol that achieves the guaranteed small path stretch with significantly reduced communication overhead. We then present our location-based multicast routing protocol that finds near optimal routing paths from a source node to multicast member nodes, with efficient mechanisms for controllable packet header size and energy-efficient recovery from packet losses. Our CNT-aware convergecast routing protocol improves the network lifetime by identifying network regions with concentrated network traffic and distributing the traffic by using the novel concept of virtual boundaries. Finally, we present the design and implementation details of our unified routing framework that seamlessly integrates proposed unicast, multicast, and convergecast routing protocols. Specifically, we discuss the issues regarding the implementation of our routing protocols on real hardware, and the design of the framework that significantly reduces the code and memory size to fit in a resource constrained sensor mote. We conclude with a proactive solution designed to cope with CNTs, where mobile nodes are used for “patching” CNTs to restore the network connectivity and to optimize the network performance

    Abstracting Application Development for Resource Constrained Wireless Sensor Networks

    Get PDF
    Ubiquitous computing is a concept whereby computing is distributed across smart objects surrounding users, creating ambient intelligence. Ubiquitous applications use technologies such as the Internet, sensors, actuators, embedded computers, wireless communication, and new user interfaces. The Internet-of-Things (IoT) is one of the key concepts in the realization of ubiquitous computing, whereby smart objects communicate with each other and the Internet. Further, Wireless Sensor Networks (WSNs) are a sub-group of IoT technologies that consist of geographically distributed devices or nodes, capable of sensing and actuating the environment.WSNs typically contain tens to thousands of nodes that organize and operate autonomously to perform application-dependent sensing and sensor data processing tasks. The projected applications require nodes to be small in physical size and low-cost, and have a long lifetime with limited energy resources, while performing complex computing and communications tasks. As a result, WSNs are complex distributed systems that are constrained by communications, computing and energy resources. WSN functionality is dynamic according to the environment and application requirements. Dynamic multitasking, task distribution, task injection, and software updates are required in field experiments for possibly thousands of nodes functioning in harsh environments.The development of WSN application software requires the abstraction of computing, communication, data access, and heterogeneous sensor data sources to reduce the complexities. Abstractions enable the faster development of new applications with a better reuse of existing software, as applications are composed of high-level tasks that use the services provided by the devices to execute the application logic.The main research question of this thesis is: What abstractions are needed for application development for resource constrained WSNs? This thesis models WSN abstractions with three levels that build on top of each other: 1) node abstraction, 2) network abstraction, and 3) infrastructure abstraction. The node abstraction hides the details in the use of the sensing, communication, and processing hardware. The network abstraction specifies methods of discovering and accessing services, and distributing processing in the network. The infrastructure abstraction unifies different sensing technologies and infrastructure computing platforms.As a contribution, this thesis presents the abstraction model with a review of each abstraction level. Several designs for each of the levels are tested and verified with proofs of concept and analyses of field experiments. The resulting designs consist of an operating system kernel, a software update method, a data unification interface, and all abstraction levels combining abstraction called an embedded cloud.The presented operating system kernel has a scalable overhead and provides a programming approach similar to a desktop computer operating system with threads and processes. An over-the-air update method combines low overhead and robust software updating with application task dissemination. The data unification interface homogenizes the access to the data of heterogeneous sensor networks. A unification model is used for various use cases by mapping everything as measurements. The embedded cloud allows resource constrained WSNs to share services and data, and expand resources with other technologies. The embedded cloud allows the distributed processing of applications according to the available services. The applications are implemented as processes using a hardware independent description language that can be executed on resource constrained WSNs. The lessons of practical field experimenting are analyzed to study the importance of the abstractions. Software complexities encountered in the field experiments highlight the need for suitable abstractions.The results of this thesis are tested using proof of concept implementations on real WSN hardware which is constrained by computing power in the order of a few MIPS, memory sizes of a few kilobytes, and small sized batteries. The results will remain usable in the future, as the vast amount, tight integration, and low-cost of future IoT devices require the combination of complex computation with resource constrained platforms

    Dynamics in Logistics

    Get PDF
    This open access book highlights the interdisciplinary aspects of logistics research. Featuring empirical, methodological, and practice-oriented articles, it addresses the modelling, planning, optimization and control of processes. Chiefly focusing on supply chains, logistics networks, production systems, and systems and facilities for material flows, the respective contributions combine research on classical supply chain management, digitalized business processes, production engineering, electrical engineering, computer science and mathematical optimization. To celebrate 25 years of interdisciplinary and collaborative research conducted at the Bremen Research Cluster for Dynamics in Logistics (LogDynamics), in this book hand-picked experts currently or formerly affiliated with the Cluster provide retrospectives, present cutting-edge research, and outline future research directions

    A linguistic approach to concurrent, distributed, and adaptive programming across heterogeneous platforms

    Get PDF
    Two major trends in computing hardware during the last decade have been an increase in the number of processing cores found in individual computer hardware platforms and an ubiquity of distributed, heterogeneous systems. Together, these changes can improve not only the performance of a range of applications, but the types of applications that can be created. Despite the advances in hardware technology, advances in programming of such systems has not kept pace. Traditional concurrent programming has always been challenging, and is only set to be come more so as the level of hardware concurrency increases. The different hardware platforms which make up heterogeneous systems come with domain-specific programming models, which are not designed to interact, or take into account the different resource-constraints present across different hardware devices, motivating a need for runtime reconfiguration or adaptation. This dissertation investigates the actor model of computation as an appropriate abstraction to address the issues present in programming concurrent, distributed, and adaptive applications across different scales and types of computing hardware. Given the limitations of other approaches, this dissertation describes a new actor-based programming language (Ensemble) and its runtime to address these challenges. The goal of this language is to enable non-specialist programmers to take advantage of parallel, distributed, and adaptive programming without the programmer requiring in-depth knowledge of hardware architectures or software frameworks. There is also a description of the design and implementation of the runtime system which executes Ensemble applications across a range of heterogeneous platforms. To show the suitability of the actor-based abstraction in creating applications for such systems, the language and runtime were evaluated in terms of linguistic complexity and performance. These evaluations covered programming embedded, concurrent, distributed, and adaptable applications, as well as combinations thereof. The results show that the actor provides an objectively simple way to program such systems without sacrificing performance
    corecore