171 research outputs found

    Ant-based evidence distribution with periodic broadcast in attacked wireless network

    Get PDF
    In order to establish trust among nodes in large wireless networks, the trust certicates need to be distributed and be readily accessible. However, even so, searching for trust certicates will still become highly cost and delay especially when wireless network is suering CTS jamming attack. We believe the individual solution can lead us to solve this combination problems in the future. Therefore, in this work, we investigate the delay and cost of searching a distributed certicate and the adverse eects of fabiricated control packet attacks on channel throughput and delivery ratio respectively, and propose two techniques that can improve the eciency of searching for such certicates in the network and mitigate the CTS jamming attack's eect. Evidence Distribution based on Periodic Broadcast (EDPB) is the rst solution we presented to help node to quickly locate trust certicates in a large wireless sensor network. In this solution, we not only take advantages from swarm intelligence alogrithm, but also allow nodes that carrying certicates to periodically announce their existence. Such announcements, together with a swarm-intelligence pheromone pdate procedure, will leave traces on the nodes to lead query packets toward the certicate nodes. We then investigate the salient features of this schema and evaluate its performance in both static and mobile networks. This schema can also be used for other essential information dissemination in mobile ad hoc networks. The second technqiue, address inspection schema (AIS) xes vulnerabilities exist in distribution coordinating function (DCF) dened in IEEE 802.11 standard so that each node has the ability to beat the impact of CTS jamming attack and furthermore, benets network throughput. We then perform ns-2 simulations to evaluate the benet of AIS

    Information distribution and recharging dispatch strategy in large wireless networks

    Get PDF
    Large wireless networks are envisioned to play increasingly important roles as more and more mobile wireless devices and Internet of Things (IoT) devices are put in use. In these networks, it is often the case that some critical information needs to be readily accessible, requiring a careful design of the information distribution technique. In this work, we at first propose PeB, Periodic Broadcast, that takes advantage of periodic broadcast from the information server(s) to leave traces for nodes requesting for the information while maintaining a low overhead. Similar to swarm intelligence, PeB requires each node to keep track of traces, or past records of information flow, through itself toward information servers. We present our extensive investigation of the PeB scheme on cost and network dynamics as compared to other state-of-the-art techniques. When the devices run out of battery, they become static and need to be recharged by the wireless charging vehicles (WCVs). Often times, WCV receives a number of charging requests and form a Hamiltonian cycle and visit these nodes one-by-one. We also propose a heuristic algorithm, termed Quad, that generates a Hamiltonian cycle in a square plane. We then focus on the theoretical study of the length of the Hamiltonian cycles in such networks

    ESAHR: Energy Efficient Swarm Adaptive Hybrid Routing Topology for Mobile Ad hoc Networks

    Get PDF
    Ad hoc networks consist of independent self structured nodes. Nodes use a wireless medium for exchange their message or data, therefore two nodes can converse directly if and only if they are within each other2019;s broadcast range. Swarm intelligence submits to complex behaviors that occur from very effortless individual activities and exchanges, which is frequently experienced in nature, especially amongst social insects such as ants. Although each individual (an ant) has little intelligence and simply follows basic rules using local information gained from the surroundings, for instance ant2019;s pheromone track arranging and following activities, globally optimized activities, such as discovering a shortest route, appear when they work together as a group. In this regard in our earlier work we proposed a biologically inspired metaphor based routing in mobile ad hoc networks that referred as Swarm Adaptive Hybrid Routing (SAHR). . With the motivation gained from SAHR, here in this paper we propose a energy efficient swarm adaptive hybrid routing topology (ESAHR). The goal is to improve transmission performance along with energy conservation that used for packet transmission In this paper we use our earlier proposed algorithm that inspired from Swarm Intelligence to obtain these characteristics. In an extensive set of simulation tests, we evaluate our routing algorithm with state-of-the-art algorithm, and demonstrate that it gets better performance over a wide range of diverse scenarios and for a number of different assessment measures. In particular, we show that it scales better in energy conservation with the number of nodes in the network

    Cost Optimization Approach for MANET using Particle Swarm Optimization

    Get PDF
    This paper present the approach require to increase the QoS of MANET network using particle swarm optimization algorithm. To improve data communication between two nodes we propose an efficient algorithm for AODV protocol using PSO where instead of suppling all default parameter with default value of AODV protocol we try to provide selective parameters with optimum value so that overall requirement of control packet get decrease that in turn result in to increase quality of service parameters of MANET. For the enhancement of reliability and reduction of cost, node speed control mechanism is implemented using PSO, The given method which is use for simulation, reduces the overall loss of data and also make transmission effective. We have also tested the performance of network by changing data rates and the speed of the node

    Mesh based and Hybrid Multicast routing protocols for MANETs: Current State of the art

    Get PDF
    This paper discusses various multicast routing protocols which are proposed in the recent past each having its own unique characteristic, with a motive of providing a complete understanding of these multicast routing protocols and present the scope of future research in this field. Further, the paper specifically discusses the current development in the development of mesh based and hybrid multicasting routing protocols. The study of this paper addresses the solution of most difficult task in Multicast routing protocols for MANETs under host mobility which causes multi-hop routing which is even more severe with bandwidth limitations. The Multicast routing plays a substantial part in MANETs

    An Energy Efficient and Cost Reduction based Hybridization Scheme for Mobile Ad-hoc Networks (MANET) over the Internet of Things (IoT)

    Get PDF
    Wireless networks are viewed as the best-used network and specifically Portable Specially Appointed Organizations (MANETs) have tracked down numerous applications for its information transmission progressively. The plan issues in this organization are to confine the utilization of energy while communicating data and give security to the hubs. Soa protocol needs to be energy efficient to avoid network failures. Thereby this paper brings an effective energy efficient to optimize LEAR and make it energy efficient. The energy-mindfulness element is added to the LEAR guiding convention in this work using the Binary Particle Swarm Optimization method (BPSO). The recommended method selects programmes taking into account course length in addition to the programme level of energy when predicting the future. To get good results, the steered challenge is first designed using LEAR. The next step is to choose a route that enhances the weighting capability of the study hours and programming power used.This MANET has been secured using the cryptographic method known as AES.According to experimental findings, the proposed hybrid version outperformed other cutting-edge models
    corecore