290 research outputs found

    A Custom Firmware and Lightweight Battery System Design for Portable RFID Reader

    Get PDF
    Small to large-scale companies mostly have warehouses to store their inventories, and to manage them a warehouse management system is required. A low cost, yet powerful solution is using a portable RFID reader. In RFID portable reader system, there are three components which are the most essential, i.e. host and its firmware, RF module, and battery.. In this paper, we propose a custom firmware design, which is compatible with different RFID reader chips or development boards. The custom firmware is designed to work by triggering the execution of Electronic Product Code (EPC) Generation 2 protocol standard command on the reader chip. Hence, the firmware can fully utilize the reader chip’s command. Furthermore, a lightweight battery system is also designed. Targeting for a high mobility use, a very lightweight Li-Pro battery, weighing of only 0.1 kg, is used for the battery system. It is also able to work at long operating hour up to 4 hour

    Internet of Things (IoT) Applications With Diverse Direct Communication Methods

    Get PDF
    Title from PDF of title page viewed August 28, 2017Dissertation advisor: Baek-Young ChoiVitaIncludes bibliographical references (pages 124-138)Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2016Internet of Things (IoT) is a network of physical objects or things that are embedded with electronics, software, sensors, and network connectivity - which enable the object to collect and exchange data. Rapid proliferation of IoT is driving the intelligence in things used daily in homes, workplaces and industry. The IoT devices typically communicate via radio frequency (RF), such as WiFi and Bluetooth. In this dissertation we deeply analyze the various characteristics of different wireless communication methods in terms of range, energy-efficiency, and radiation pattern. We find that a well-established communication method might not be the most efficient, and other alternate communication methods with the desired properties for a particular application could exist. We exploit radically alternative, innovative, and complimentary wireless communication methods, including radio frequency, infrared (IR), and visible lights, through the IoT applications we have designed and built with those. We have developed various IoT applications which provide security and authentication, enable vehicular communications with smartphones or other smart devices, provide energy-efficient and accurate positioning to smart devices, and enable energy-efficient communications in Industrial Internet of Things (IIoT).Introduction -- Optical wireless authentication for SMART devices using an onboard ambient light sensor -- Smartphome based CAR2X-communication with wifi beacon stuffing for vulnerable road user safety -- Energy-efficient cooperative opportunistic positioning heterogeneous Smart devices -- Reducing and balancing energy consumption in Indistrial Internet of Things (IIoT) -- Optical wireless unlocking for Smart door locks using Smartphones -- Summary and future direction

    Energy Efficient Distributed Processing for IoT

    Get PDF
    The number of connected objects in the Internet of Things (IoT) is growing exponentially. IoT devices are expected to number between 26 billion to 50 billion devices by 2020 and this figure can grow even further due to the production of miniaturised portable devices that are lightweight, energy and cost efficient together with the widespread use of the Internet and the added value organisations and individuals can gain from IoT devices, if their data is processed. These connected objects are expected to be used in multitudes of applications, of which, some are, highly resource intensive such as visual processing services for surveillance based object recognition applications. The sensed data requires processing by the cloud in order to extract knowledge and make decisions accordingly. Given the pervasiveness of future IoT-based visual processing applications, massive amounts of data will be collected due to the nature of multimedia files. Transporting all that collected data to the cloud at the core of the network, is prohibitively costly, in terms of energy consumption. Hence, to tackle the aforementioned challenges, distributed processing is proposed by academia and industry to make use of a large number of devices located in the edge of the network to process some or all of the data before it gets to the cloud. Due to the heterogeneity of the devices in the edge of the network, it is crucial to develop energy efficient models that take care of resource provisioning optimally. The focus in today’s network design and development has shifted towards energy efficiency, due to the rising cost of electricity, resource scarcity and increasing emission of carbon dioxide (CO2). This thesis addresses some of the challenges associated with service placement in a distributed architecture such as the fog. First, a Passive Optical Network (PON) is used to connect IoT devices and to support the fog infrastructure. A metro network is also used to connect to the fog and aggregate traffic from the PON towards the core network. An IP/WDM backbone network is considered to model the core layer and to interconnect the cloud data centres. The entire network was modelled and optimised through Mixed Integer Linear Programming (MILP) and the total end to end power consumption was jointly minimised for processing and networking. Two aspects of service placements were examined: 1) non-splitable services, and 2) splitable services. The results obtained showed that, in the capacitated problem, service splitting introduced power consumption savings of up to 86% compared to 46% with non-splitable services. Moreover, an energy efficient special purposed data centre (SP-DC) was deployed in addition to its general purpose counterpart (GP-DC). The results showed that, for very high demands, power savings of up to 50% could be achieved compared to 30% without SP-DC. The performance of the proposed architecture was further examined by considering additional dimensions to the problem of service placements such as resiliency dimension in terms of 1+1 server protection, in the long term network design problem (un-capacitated) and the impact of inter-service synchronisation overhead on the total number service splits per task

    Energy harvesting-aware design of wireless networks

    Get PDF
    Recent advances in low-power electronics and energy-harvesting (EH) technologies enable the design of self-sustained devices that collect part, or all, of the needed energy from the environment. Several systems can take advantage of EH, ranging from portable devices to wireless sensor networks (WSNs). While conventional design for battery-powered systems is mainly concerned with the battery lifetime, a key advantage of EH is that it enables potential perpetual operation of the devices, without requiring maintenance for battery substitutions. However, the inherent unpredictability regarding the amount of energy that can be collected from the environment might cause temporary energy shortages, which might prevent the devices to operate regularly. This uncertainty calls for the development of energy management techniques that are tailored to the EH dynamics. While most previous work on EH-capable systems has focused on energy management for single devices, the main contributions of this dissertation is the analysis and design of medium access control (MAC) protocols for WSNs operated by EH-capable devices. In particular, the dissertation first considers random access MAC protocols for single-hop EH networks, in which a fusion center collects data from a set of nodes distributed in its surrounding. MAC protocols commonly used in WSNs, such as time division multiple access (TDMA), framed-ALOHA (FA) and dynamic-FA (DFA) are investigated in the presence of EH-capable devices. A new ALOHA-based MAC protocol tailored to EH-networks, referred to as energy group-DFA (EG-DFA), is then proposed. In EG-DFA nodes with similar energy availability are grouped together and access the channel independently from other groups. It is shown that EG-DFA significantly outperforms the DFA protocol. Centralized scheduling-based MAC protocols for single-hop EH-networks with communication resource constraints are considered next. Two main scenarios are addressed, namely: i) nodes exclusively powered via EH; ii) nodes powered by a hybrid energy storage system, which is composed by a non-rechargeable battery and a capacitor charged via EH. For the former case the goal is the maximization of the network throughput, while in the latter the aim is maximizing the lifetime of the non-rechargeable batteries. For both scenarios optimal scheduling policies are derived by assuming different levels of information available at the fusion center about the energy availability at the nodes. When optimal policies are not derived explicitly, suboptimal policies are proposed and compared with performance upper bounds. Energy management policies for single devices have been investigated as well by focusing on radio frequency identification (RFID) systems, when the latter are operated by enhanced RFID tags with energy harvesting capabilities

    Urubu: energy scavenging in wireless sensor networks

    Get PDF
    For the past years wireless sensor networks (WSNs) have been coined as one of the most promising technologies for supporting a wide range of applications. However, outside the research community, few are the people who know what they are and what they can offer. Even fewer are the ones that have seen these networks used in real world applications. The main obstacle for the proliferation of these networks is energy, or the lack of it. Even though renewable energy sources are always present in the networks environment, designing devices that can efficiently scavenge that energy in order to sustain the operation of these networks is still an open challenge. Energy scavenging, along with energy efficiency and energy conservation, are the current available means to sustain the operation of these networks, and can all be framed within the broader concept of “Energetic Sustainability”. A comprehensive study of the several issues related to the energetic sustainability of WSNs is presented in this thesis, with a special focus in today’s applicable energy harvesting techniques and devices, and in the energy consumption of commercially available WSN hardware platforms. This work allows the understanding of the different energy concepts involving WSNs and the evaluation of the presented energy harvesting techniques for sustaining wireless sensor nodes. This survey is supported by a novel experimental analysis of the energy consumption of the most widespread commercially available WSN hardware platforms.Há já alguns anos que as redes de sensores sem fios (do Inglês Wireless Sensor Networks - WSNs) têm sido apontadas como uma das mais promissoras tecnologias de suporte a uma vasta gama de aplicações. No entanto, fora da comunidade científica, poucas são as pessoas que sabem o que elas são e o que têm para oferecer. Ainda menos são aquelas que já viram a sua utilização em aplicações do dia-a-dia. O principal obstáculo para a proliferação destas redes é a energia, ou a falta dela. Apesar da existência de fontes de energia renováveis no local de operação destas redes, continua a ser um desafio construir dispositivos capazes de aproveitar eficientemente essa energia para suportar a operação permanente das mesmas. A colheita de energia juntamente com a eficiência energética e a conservação de energia, são os meios disponíveis actualmente que permitem a operação permanente destas redes e podem ser todos englobados no conceito mais amplo de “Sustentabilidade Energética”. Esta tese apresenta um estudo extensivo das várias questões relacionadas com a sustentabilidade energética das redes de sensores sem fios, com especial foco nas tecnologias e dispositivos explorados actualmente na colheita de energia e no consumo energético de algumas plataformas comercias de redes de sensores sem fios. Este trabalho permite compreender os diferentes conceitos energéticos relacionados com as redes de sensores sem fios e avaliar a capacidade das tecnologias apresentadas em suportar a operação permanente das redes sem fios. Este estudo é suportado por uma inovadora análise experimental do consumo energético de algumas das mais difundidas plataformas comerciais de redes de sensores sem fios

    RFID Technology in Intelligent Tracking Systems in Construction Waste Logistics Using Optimisation Techniques

    Get PDF
    Construction waste disposal is an urgent issue for protecting our environment. This paper proposes a waste management system and illustrates the work process using plasterboard waste as an example, which creates a hazardous gas when land filled with household waste, and for which the recycling rate is less than 10% in the UK. The proposed system integrates RFID technology, Rule-Based Reasoning, Ant Colony optimization and knowledge technology for auditing and tracking plasterboard waste, guiding the operation staff, arranging vehicles, schedule planning, and also provides evidence to verify its disposal. It h relies on RFID equipment for collecting logistical data and uses digital imaging equipment to give further evidence; the reasoning core in the third layer is responsible for generating schedules and route plans and guidance, and the last layer delivers the result to inform users. The paper firstly introduces the current plasterboard disposal situation and addresses the logistical problem that is now the main barrier to a higher recycling rate, followed by discussion of the proposed system in terms of both system level structure and process structure. And finally, an example scenario will be given to illustrate the system’s utilization

    Integrated Data and Energy Communication Network: A Comprehensive Survey

    Get PDF
    OAPA In order to satisfy the power thirsty of communication devices in the imminent 5G era, wireless charging techniques have attracted much attention both from the academic and industrial communities. Although the inductive coupling and magnetic resonance based charging techniques are indeed capable of supplying energy in a wireless manner, they tend to restrict the freedom of movement. By contrast, RF signals are capable of supplying energy over distances, which are gradually inclining closer to our ultimate goal – charging anytime and anywhere. Furthermore, transmitters capable of emitting RF signals have been widely deployed, such as TV towers, cellular base stations and Wi-Fi access points. This communication infrastructure may indeed be employed also for wireless energy transfer (WET). Therefore, no extra investment in dedicated WET infrastructure is required. However, allowing RF signal based WET may impair the wireless information transfer (WIT) operating in the same spectrum. Hence, it is crucial to coordinate and balance WET and WIT for simultaneous wireless information and power transfer (SWIPT), which evolves to Integrated Data and Energy communication Networks (IDENs). To this end, a ubiquitous IDEN architecture is introduced by summarising its natural heterogeneity and by synthesising a diverse range of integrated WET and WIT scenarios. Then the inherent relationship between WET and WIT is revealed from an information theoretical perspective, which is followed by the critical appraisal of the hardware enabling techniques extracting energy from RF signals. Furthermore, the transceiver design, resource allocation and user scheduling as well as networking aspects are elaborated on. In a nutshell, this treatise can be used as a handbook for researchers and engineers, who are interested in enriching their knowledge base of IDENs and in putting this vision into practice

    Semantic discovery and reuse of business process patterns

    Get PDF
    Patterns currently play an important role in modern information systems (IS) development and their use has mainly been restricted to the design and implementation phases of the development lifecycle. Given the increasing significance of business modelling in IS development, patterns have the potential of providing a viable solution for promoting reusability of recurrent generalized models in the very early stages of development. As a statement of research-in-progress this paper focuses on business process patterns and proposes an initial methodological framework for the discovery and reuse of business process patterns within the IS development lifecycle. The framework borrows ideas from the domain engineering literature and proposes the use of semantics to drive both the discovery of patterns as well as their reuse
    corecore