2,114 research outputs found

    Overlay networks for smart grids

    Get PDF

    Content Distribution by Multiple Multicast Trees and Intersession Cooperation: Optimal Algorithms and Approximations

    Full text link
    In traditional massive content distribution with multiple sessions, the sessions form separate overlay networks and operate independently, where some sessions may suffer from insufficient resources even though other sessions have excessive resources. To cope with this problem, we consider the universal swarming approach, which allows multiple sessions to cooperate with each other. We formulate the problem of finding the optimal resource allocation to maximize the sum of the session utilities and present a subgradient algorithm which converges to the optimal solution in the time-average sense. The solution involves an NP-hard subproblem of finding a minimum-cost Steiner tree. We cope with this difficulty by using a column generation method, which reduces the number of Steiner-tree computations. Furthermore, we allow the use of approximate solutions to the Steiner-tree subproblem. We show that the approximation ratio to the overall problem turns out to be no less than the reciprocal of the approximation ratio to the Steiner-tree subproblem. Simulation results demonstrate that universal swarming improves the performance of resource-poor sessions with negligible impact to resource-rich sessions. The proposed approach and algorithm are expected to be useful for infrastructure-based content distribution networks with long-lasting sessions and relatively stable network environment

    Mobility Support in User-Centric Networks

    Get PDF
    In this paper, an overview of challenges and requirements for mobility management in user-centric networks is given, and a new distributed and dynamic per-application mobility management solution is presented. After a brief summary of generic mobility management concepts, existing approaches from the distributed and peer-to-peer mobility management literature are introduced, along with their applicability or shortcomings in the UCN environment. Possible approaches to deal with the decentralized and highly dynamic nature of UCNs are also provided with a discussion and an introduction to potential future work

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Navigation of brain networks

    Get PDF
    Understanding the mechanisms of neural communication in large-scale brain networks remains a major goal in neuroscience. We investigated whether navigation is a parsimonious routing model for connectomics. Navigating a network involves progressing to the next node that is closest in distance to a desired destination. We developed a measure to quantify navigation efficiency and found that connectomes in a range of mammalian species (human, mouse and macaque) can be successfully navigated with near-optimal efficiency (>80% of optimal efficiency for typical connection densities). Rewiring network topology or repositioning network nodes resulted in 45%-60% reductions in navigation performance. Specifically, we found that brain networks cannot be progressively rewired (randomized or clusterized) to result in topologies with significantly improved navigation performance. Navigation was also found to: i) promote a resource-efficient distribution of the information traffic load, potentially relieving communication bottlenecks; and, ii) explain significant variation in functional connectivity. Unlike prevalently studied communication strategies in connectomics, navigation does not mandate biologically unrealistic assumptions about global knowledge of network topology. We conclude that the wiring and spatial embedding of brain networks is conducive to effective decentralized communication. Graph-theoretic studies of the connectome should consider measures of network efficiency and centrality that are consistent with decentralized models of neural communication

    Global state, local decisions: Decentralized NFV for ISPs via enhanced SDN

    Get PDF
    The network functions virtualization paradigm is rapidly gaining interest among Internet service providers. However, the transition to this paradigm on ISP networks comes with a unique set of challenges: legacy equipment already in place, heterogeneous traffic from multiple clients, and very large scalability requirements. In this article we thoroughly analyze such challenges and discuss NFV design guidelines that address them efficiently. Particularly, we show that a decentralization of NFV control while maintaining global state improves scalability, offers better per-flow decisions and simplifies the implementation of virtual network functions. Building on top of such principles, we propose a partially decentralized NFV architecture enabled via an enhanced software-defined networking infrastructure. We also perform a qualitative analysis of the architecture to identify advantages and challenges. Finally, we determine the bottleneck component, based on the qualitative analysis, which we implement and benchmark in order to assess the feasibility of the architecture.Peer ReviewedPostprint (author's final draft
    • …
    corecore