2,697 research outputs found

    Models and algorithms for trauma network design.

    Get PDF
    Trauma continues to be the leading cause of death and disability in the US for people aged 44 and under, making it a major public health problem. The geographical maldistribution of Trauma Centers (TCs), and the resulting higher access time to the nearest TC, has been shown to impact trauma patient safety and increase disability or mortality. State governments often design a trauma network to provide prompt and definitive care to their citizens. However, this process is mainly manual and experience-based and often leads to a suboptimal network in terms of patient safety and resource utilization. This dissertation fills important voids in this domain and adds much-needed realism to develop insights that trauma decision-makers can use to design their trauma network. In this dissertation, we develop multiple optimization-based trauma network design approaches focusing minimizing mistriages and, in some cases, ensuring equity in care among regions. To mimic trauma care in practice, several realistic features are considered in our approach, which include the consideration of: (i) both severely and non-severely injured trauma patients and associated mistriages, (ii) intermediate trauma centers (ITCs) along with major trauma centers (MTCs), (iii) three dominant criteria for destination determination, and (iv) mistriages in on-scene clinical assessment of injuries. Our first contribution (Chapter 2) proposes the Trauma Center Location Problem (TCLP) that determines the optimal number and location of major trauma centers (MTCs) to improve patient safety. The bi-objective optimization model for TCLP explicitly considers both types of patients (severe and non-severe) and associated mistriages (specifically, system-related under- and over-triages) as a surrogate for patient safety. These mistriages are estimated using our proposed notional tasking algorithm that attempts to mimic the EMS on-scene decision of destination hospital and transportation mode. We develop a heuristic based on Particle Swarm Optimization framework to efficiently solve realistic problem sizes. We illustrate our approach using 2012 data from the state of OH and show that an optimized network for the state could achieve 31.5% improvement in patient safety compared to the 2012 network with the addition of just one MTC; redistribution of the 21 MTCs in the 2012 network led to a 30.4% improvement. Our second contribution (Chapter 3) introduces a Nested Trauma Network Design Problem (NTNDP), which is a nested multi-level, multi-customer, multi-transportation, multi-criteria, capacitated model. The NTNDP model has a bi-objective of maximizing the weighted sum of equity and effectiveness in patient safety. The proposed model includes intermediate trauma centers (TCs) that have been established in many US states to serve as feeder centers to major TCs. The model also incorporates three criteria used by EMS for destination determination; i.e., patient/family choice, closest facility, and protocol. Our proposed ‘3-phase’ approach efficiently solves the resulting MIP model by first solving a relaxed version of the model, then a Constraint Satisfaction Problem, and a modified version of the original optimization problem (if needed). A comprehensive experimental study is conducted to determine the sensitivity of the solutions to various system parameters. A case study is presented using 2019 data from the state of OH that shows more than 30% improvement in the patient safety objective. In our third contribution (Chapter 4), we introduce Trauma Network Design Problem considering Assessment-related Mistriages (TNDP-AM), where we explicitly consider mistriages in on-scene assessment of patient injuries by the EMS. The TNDP-AM model determines the number and location of major trauma centers to maximize patient safety. We model assessment-related mistriages using the Bernoulli random variable and propose a Simheuristic approach that integrates Monte Carlo Simulation with a genetic algorithm (GA) to solve the problem efficiently. Our findings indicate that the trauma network is susceptible to assessment-related mistriages; specifically, higher mistriages in assessing severe patients may lead to a 799% decrease in patient safety and potential clustering of MTCs near high trauma incidence rates. There are several implications of our findings to practice. State trauma decision-makers can use our approaches to not only better manage limited financial resources, but also understand the impact of changes in operational parameters on network performance. The design of training programs for EMS providers to build standardization in decision-making is another advantage

    Strategic Location and Dispatch Management of Assets in a Military Medical Evacuation Enterprise

    Get PDF
    This dissertation considers the importance of optimizing deployed military medical evacuation (MEDEVAC) systems and utilizes operations research techniques to develop models that allow military medical planners to analyze different strategies regarding the management of MEDEVAC assets in a deployed environment. For optimization models relating to selected subproblems of the MEDEVAC enterprise, the work herein leverages integer programming, multi-objective optimization, Markov decision processes, approximate dynamic programming, and machine learning, as appropriate, to identify relevant insights for aerial MEDEVAC operations

    The effect of environmental factors on technical and scale efficiency of primary health care providers in Greece

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to compare technical and scale efficiency of primary care centers from the two largest Greek providers, the National Health System (NHS) and the Social Security Foundation (IKA) and to determine if, and how, efficiency is affected by various exogenous factors such as catchment population and location.</p> <p>Methods</p> <p>The sample comprised of 194 units (103 NHS and 91 IKA). Efficiency was measured with Data Envelopment Analysis (DEA) using three inputs, -medical staff, nursing/paramedical staff, administrative/other staff- and two outputs, which were the aggregated numbers of scheduled/emergency patient visits and imaging/laboratory diagnostic tests. Facilities were categorized as small, medium and large (<15,000, 15,000–30,000 and >30,000 respectively) to reflect catchment population and as urban/semi-urban or remote/island to reflect location. In a second stage analysis, technical and scale efficiency scores were regressed against facility type (NHS or IKA), size and location using multivariate Tobit regression.</p> <p>Results</p> <p>Regarding technical efficiency, IKA performed better than the NHS (84.9% vs. 70.1%, Mann-Whitney <it>P </it>< 0.001), smaller units better than medium-sized and larger ones (84.2% vs. 72.4% vs. 74.3%, Kruskal-Wallis <it>P </it>< 0.01) and remote/island units better than urban centers (81.1% vs. 75.7%, Mann-Whitney <it>P </it>= 0.103). As for scale efficiency, IKA again outperformed the NHS (89.7% vs. 85.9%, Mann-Whitney <it>P </it>= 0.080), but results were reversed in respect to facility size and location. Specifically, larger units performed better (96.3% vs. 90.9% vs. 75.9%, Kruskal-Wallis <it>P </it>< 0.001), and urban units showed higher scale efficiency than remote ones (91.9% vs. 75.3%, Mann-Whitney <it>P </it>< 0.001). Interestingly 75% of facilities appeared to be functioning under increasing returns to scale. Within-group comparisons revealed significant efficiency differences between the two primary care providers. Tobit regression models showed that facility type, size and location were significant explanatory variables of technical and scale efficiency.</p> <p>Conclusion</p> <p>Variations appeared to exist in the productive performance of the NHS and IKA as the two main primary care providers in Greece. These variations reflect differences in primary care organization, economical incentives, financial constraints, sociodemographic and local peculiarities. In all technical efficiency comparisons, IKA facilities appeared to outperform NHS ones irrespective of facility size or location. In respect to scale efficiency, the results were to some extent inconclusive and observed differences were mostly insignificant, although again IKA appeared to perform better.</p

    Emergency medical supplies scheduling during public health emergencies: algorithm design based on AI techniques

    Get PDF
    Based on AI technology, this study proposes a novel large-scale emergency medical supplies scheduling (EMSS) algorithm to address the issues of low turnover efficiency of medical supplies and unbalanced supply and demand point scheduling in public health emergencies. We construct a fairness index using an improved Gini coefficient by considering the demand for emergency medical supplies (EMS), actual distribution, and the degree of emergency at disaster sites. We developed a bi-objective optimisation model with a minimum Gini index and scheduling time. We employ a heterogeneous ant colony algorithm to solve the Pareto boundary based on reinforcement learning. A reinforcement learning mechanism is introduced to update and exchange pheromones among populations, with reward factors set to adjust pheromones and improve algorithm convergence speed. The effectiveness of the algorithm for a large EMSS problem is verified by comparing its comprehensive performance against a super-large capacity evaluation index. Results demonstrate the algorithm's effectiveness in reducing convergence time and facilitating escape from local optima in EMSS problems. The algorithm addresses the issue of demand differences at each disaster point affecting fair distribution. This study optimises early-stage EMSS schemes for public health events to minimise losses and casualties while mitigating emotional distress among disaster victims

    Models, algorithms and applications for location problems

    Full text link

    Network Flexibility for Recourse Considerations in Bi-Criteria Facility Location

    Get PDF
    What is the best set of facility location decisions for the establishment of a logistics network when it is uncertain how a company’s distribution strategy will evolve? What is the best configuration of a distribution network that will most likely have to be altered in the future? Today’s business environment is turbulent, and operating conditions for firms can take a turn for the worse at any moment. This fact can and often does influence companies to occasionally expand or contract their distribution networks. For most companies operating in this chaotic business environment, there is a continuous struggle between staying cost efficient and supplying adequate service. Establishing a distribution network which is flexible or easily adaptable is the key to survival under these conditions. This research begins to address the problem of locating facilities in a logistics network in the face of an evolving strategic focus through the implicit consideration of the uncertainty of parameters. The trade-off of cost and customer service is thoroughly examined in a series of multi-criteria location problems. Modeling techniques for incorporating service restrictions for facility location in strategic network design are investigated. A flexibility metric is derived for the purposes of quantifying the similarity of a set of non-dominated solutions in strategic network design. Finally, a multi-objective greedy random adaptive search (MOG) metaheuristic is applied to solve a series of bi-criteria, multi-level facility location problems

    EVA: Emergency Vehicle Allocation

    Get PDF
    Emergency medicine plays a critical role in the development of a community, where the goal is to provide medical assistance in the shortest possible time. Consequently, the systems that support emergency operations need to be robust, efficient, and effective when managing the limited resources at their disposal. To achieve this, operators analyse historical data in search of patterns present in past occurrencesthat could help predict future call volume. This is a time consuming and very complex task that could be solved by the usage of machine learning solutions, which have been performed appropriately in the context of time series forecasting. Only after the future demands are known, the optimization of the distribution of available assets can be done, for the purpose of supporting high-density zones. The current works aim to propose an integrated system capable of supporting decision-making emergency operations in a real-time environment by allocating a set of available units within a service area based on hourly call volume predictions. The suggested system architecture employs a microservices approach along with event-based communications to enable real-time interactions between every component. This dissertation focuses on call volume forecasting and optimizing allocation components. A combination of traditional time series and deep learning models was used to model historical data from Virginal Beach emergency calls between the years 2010 and 2018, combined with several other features such as weather-related information. Deep learning solutions offered better error metrics, with WaveNet having an MAE value of 0.04. Regarding optimizing emergency vehicle location, the proposed solution is based on a Linear Programming problem to minimize the number of vehicles in each station, with a neighbour mechanism, entitled EVALP-NM, to add a buffer to stations near a high-density zone. This solution was also compared against a Genetic Algorithm that performed significantly worse in terms of execution time and outcomes. The performance of EVALP-NM was tested against simulations with different settings like the number of zones, stations, and ambulances.A medicina de emergência desempenha um papel fundamental no desenvolvimento da Sociedade, onde o objetivo é prestar assistência médica no menor tempo possível. Consequentemente, os sistemas que apoiam as operações de emergência precisam de ser robustos, eficientes e eficazes na gestão dos recursos limitados. Para isso, são analisados dados históricos no intuito de encontrar padrões em ocorrências passadas que possam ajudar a prever o volume futuro de chamadas. Esta é uma tarefa demorada e muito complexa que poderia ser resolvida com o uso de soluções de Machine Learning, que têm funcionado adequadamente no contexto da previsão de séries temporais. Só depois de conhecida a demanda futura poderá ser feita a otimização da distribuição dos recursos disponíveis, com o objetivo de suportar zonas de elevada densidade populacional. O presente trabalho tem como objetivo propor um sistema integrado capaz de apoiar a tomada de decisão em operações de emergência num ambiente de tempo real, atribuindo um conjunto de unidades disponíveis dentro de uma área de serviço com base em previsões volume de chamadas a cada hora. A arquitetura de sistema sugerida emprega uma abordagem de microserviços juntamente com comunicações baseadas em eventos para permitir interações em tempo real entre os componentes. Esta dissertação centra se nos componentes de previsão do volume de chamadas e otimização da atribuição. Foram usados modelos de séries temporais tradicionais e Deep Learning para modelar dados históricos de chamadas de emergência de Virginal Beach entre os anos de 2010 e 2018, combinadas com informações relacionadas ao clima. As soluções de Deep Learning ofereceram melhores métricas de erro, com WaveNet a ter um valor MAE de 0,04. No que diz respeito à otimização da localização dos veículos de emergência, a solução proposta baseia-se num problema de Programação Linear para minimizar o número de veículos em cada estação, com um mecanismo de vizinho, denominado EVALP-NM, para adicionar unidades adicionais às estações próximas de uma zona de alta densidade de chamadas. Esta solução foi comparada com um algoritmo genético que teve um desempenho significativamente pior em termos de tempo de execução e resultados. O desempenho do EVALP-NM foi testado em simulações com configurações diferentes, como número de zonas, estações e ambulâncias

    Integrating artificial neural networks, simulation and optimisation techniques in improving public emergency ambulance preparedness for heterogeneous regions under stochastic environments.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.The Bulawayo Emergency Medical Services (BEMS) department continues to rely on judgemental methods with limited use of historical data for future predictions, strategic, tactical and operational level decision making. The rural to urban migration trend has seen the sprouting of new residential areas, and this has put pressure to the limited health, housing and education resources. It is expected that as population increases, there is subsequent increase in demand for public emergency services. However, public emergency ambulance demand trends has been decreasing in Bulawayo over the years. This trend is a sign of limited capacity of the service rather than demand itself. The situation demanded for consolidated efforts across all sectors including research, to restore confidence among residents, reduce health risk and loss of lives. The key objective was to develop a framework that would assist in integrating forecasting, simulation and optimisation techniques for ambulance deployment to predefined locations with heterogeneous demand patterns under stochastic environments, using multiple performance indicators. Secondary data from the Bulawayo Municipality archives from 2010 to 2018 was used for model building and validation. A combination of methods based on mathematics, statistics, operations research and computer science were used for data analysis, model building, sensitivity analysis and numerical experiments. Results indicate that feed forward neural network (FFNN) models are superior to traditional SARIMA models in predicting ambulance demand, over a short-term forecasting horizon. The FFNN model is more inclined to value estimation as compared to SARIMA model, which is directional as depicted by the linear pattern over time. An ANN model with a 7-(4)-1 architecture was selected to forecast 2019 public emergency ambulance demand (PEAD). Peak PEAD is expected in January, March, September and December whilst lower demand is expected for April, June and July 2019. Simulation models developed mimicked the prevailing levels of service for BEMS with six(6) operational ambulances. However. the average response times were well above 15 minutes, with significantly high average queuing times and number of ambulances queuing for service. These performance outcomes were highly undesirable as they pose a great threat to human based outcomes of safety and satisfaction with regards to service delivery. Optimisation for simulation was conducted by simultaneously minimising the average response time and average queuing time, while maximising throughput ratios. Increasing the number of ambulances influenced the average response time below a certain threshold, beyond this threshold, the average response time remained constant rather than decreasing gradually. Ambulance utilisation inversely varied to increase in the feet size. Numerical experiments revealed that reducing the response time results in the reduction in number of ambulances required for optimal ambulance deployment. It is imperative to simultaneously consider multiple performance indicators in ambulance deployment as it balances resource allocation and capacity utilisation, while avoiding idleness of essential equipment and human resources. Management should lobby for de-congestion and resurfacing of old and dilapidated roads to increase access and speed when responding to emergency calls. Future research should investigate the influence of varying service time on optimum deployment plans and consider operational costs, wages and other budgetary constraints that influence the allocation of critical but scarce resources such as personnel, equipment and emergency ambulance response vehicles
    corecore