25,479 research outputs found

    Unilateral Altruism in Network Routing Games with Atomic Players

    Full text link
    We study a routing game in which one of the players unilaterally acts altruistically by taking into consideration the latency cost of other players as well as his own. By not playing selfishly, a player can not only improve the other players' equilibrium utility but also improve his own equilibrium utility. To quantify the effect, we define a metric called the Value of Unilateral Altruism (VoU) to be the ratio of the equilibrium utility of the altruistic user to the equilibrium utility he would have received in Nash equilibrium if he were selfish. We show by example that the VoU, in a game with nonlinear latency functions and atomic players, can be arbitrarily large. Since the Nash equilibrium social welfare of this example is arbitrarily far from social optimum, this example also has a Price of Anarchy (PoA) that is unbounded. The example is driven by there being a small number of players since the same example with non-atomic players yields a Nash equilibrium that is fully efficient

    Lex-Partitioning: A New Option for BDD Search

    Full text link
    For the exploration of large state spaces, symbolic search using binary decision diagrams (BDDs) can save huge amounts of memory and computation time. State sets are represented and modified by accessing and manipulating their characteristic functions. BDD partitioning is used to compute the image as the disjunction of smaller subimages. In this paper, we propose a novel BDD partitioning option. The partitioning is lexicographical in the binary representation of the states contained in the set that is represented by a BDD and uniform with respect to the number of states represented. The motivation of controlling the state set sizes in the partitioning is to eventually bridge the gap between explicit and symbolic search. Let n be the size of the binary state vector. We propose an O(n) ranking and unranking scheme that supports negated edges and operates on top of precomputed satcount values. For the uniform split of a BDD, we then use unranking to provide paths along which we partition the BDDs. In a shared BDD representation the efforts are O(n). The algorithms are fully integrated in the CUDD library and evaluated in strongly solving general game playing benchmarks.Comment: In Proceedings GRAPHITE 2012, arXiv:1210.611

    Conflicts with Multiple Battlefields

    Get PDF
    This paper examines conflicts in which performance is measured by the players' success or failure in multiple component conflicts, commonly termed "battlefields." In multi-battlefield conflicts, behavioral linkages across battlefields depend both on the technologies of conflict within each battlefield and the nature of economies or diseconomies in how battlefield out- comes and costs aggregate in determining payoffs in the overall conflict.Con ict, Contest, Battleeld, Colonel Blotto Game, Auction, Lottery

    Conflicts with Multiple Battlefields

    Get PDF
    This paper examines conflicts in which performance is measured by the players' success or failure in multiple component conflicts, commonly termed “battlefields”. In multi-battlefield conflicts, behavioral linkages across battlefields depend both on the technologies of conflict within each battlefield and the nature of economies or diseconomies in how battlefield out-comes and costs aggregate in determining payoffs in the overall conflict.conflict, contest, battlefield, Colonel Blotto Game, auction, lottery
    • 

    corecore