5,462 research outputs found

    Balancing the Communication Load of Asynchronously Parallelized Machine Learning Algorithms

    Full text link
    Stochastic Gradient Descent (SGD) is the standard numerical method used to solve the core optimization problem for the vast majority of machine learning (ML) algorithms. In the context of large scale learning, as utilized by many Big Data applications, efficient parallelization of SGD is in the focus of active research. Recently, we were able to show that the asynchronous communication paradigm can be applied to achieve a fast and scalable parallelization of SGD. Asynchronous Stochastic Gradient Descent (ASGD) outperforms other, mostly MapReduce based, parallel algorithms solving large scale machine learning problems. In this paper, we investigate the impact of asynchronous communication frequency and message size on the performance of ASGD applied to large scale ML on HTC cluster and cloud environments. We introduce a novel algorithm for the automatic balancing of the asynchronous communication load, which allows to adapt ASGD to changing network bandwidths and latencies.Comment: arXiv admin note: substantial text overlap with arXiv:1505.0495

    Efficient Optimization of Loops and Limits with Randomized Telescoping Sums

    Full text link
    We consider optimization problems in which the objective requires an inner loop with many steps or is the limit of a sequence of increasingly costly approximations. Meta-learning, training recurrent neural networks, and optimization of the solutions to differential equations are all examples of optimization problems with this character. In such problems, it can be expensive to compute the objective function value and its gradient, but truncating the loop or using less accurate approximations can induce biases that damage the overall solution. We propose randomized telescope (RT) gradient estimators, which represent the objective as the sum of a telescoping series and sample linear combinations of terms to provide cheap unbiased gradient estimates. We identify conditions under which RT estimators achieve optimization convergence rates independent of the length of the loop or the required accuracy of the approximation. We also derive a method for tuning RT estimators online to maximize a lower bound on the expected decrease in loss per unit of computation. We evaluate our adaptive RT estimators on a range of applications including meta-optimization of learning rates, variational inference of ODE parameters, and training an LSTM to model long sequences

    Local SGD Converges Fast and Communicates Little

    Get PDF
    Mini-batch stochastic gradient descent (SGD) is state of the art in large scale distributed training. The scheme can reach a linear speedup with respect to the number of workers, but this is rarely seen in practice as the scheme often suffers from large network delays and bandwidth limits. To overcome this communication bottleneck recent works propose to reduce the communication frequency. An algorithm of this type is local SGD that runs SGD independently in parallel on different workers and averages the sequences only once in a while. This scheme shows promising results in practice, but eluded thorough theoretical analysis. We prove concise convergence rates for local SGD on convex problems and show that it converges at the same rate as mini-batch SGD in terms of number of evaluated gradients, that is, the scheme achieves linear speedup in the number of workers and mini-batch size. The number of communication rounds can be reduced up to a factor of T^{1/2}---where T denotes the number of total steps---compared to mini-batch SGD. This also holds for asynchronous implementations. Local SGD can also be used for large scale training of deep learning models. The results shown here aim serving as a guideline to further explore the theoretical and practical aspects of local SGD in these applications.Comment: to appear at ICLR 2019, 19 page
    • …
    corecore