80 research outputs found

    Insurance for Improving User Satisfaction Level

    Get PDF
    Service-level agreement (SLA) violations may lead to losses and user dissatisfaction. Despite the fact that a service guarantee can increase the satisfaction level of users, indemnities may not be commensurate with the importance of a service to a user. While predefined penalties may be insufficient to compensate for the losses of one user, another user may not suffer loss from the SLA violation. With an insurance plan, an insurer can reach an agreement with users on the premium and loss coverage volume; insurance can therefore be considered a solution for providing indemnity which is appropriate to the importance of service. An insurer cannot protect users against these losses, which are caused by a single root event, in the same way as it protects them against the losses caused by independent events. In this paper, a novel approach is proposed for providing insurance coverage for such root events by limiting insurance provisions to the users with the highest priority. A criterion is presented for priority assignment to users, and an algorithm is then proposed for providing insurance according to this priority. A game-theoretic analysis is also provided to assess acceptability of the outcome of the proposed algorithm to rational users and insurers. The results of numerical experiments demonstrate the usefulness of the proposed approach for improving the utility of the Service

    QoS-aware Cloud Infrastructure Provisioning in Heterogeneous Environments

    Get PDF
    Over the last decades Information Technology (IT) has become an enabler for nearly all businesses from industrial production to finance. The IT resources required for these business activities are usually provided by local and remote data centers. Although most resources are still hosted in companies’ proprietary data centers, cloud computing initiated a paradigm shift in IT service provisioning from owning to leasing resources and services. Today, over 50% of German companies use cloud services while shifting services into the cloud has become an emerging trend. Cloud computing, which is often referred to as the fifth utility in addition to water, electricity, gas, and telephony, provides commoditized computation resources that are available any time on demand in the required quantity. However, in contrast to other commodities, a single quality level is insufficient for IT service provisioning. Instead, the required quality for a provided IT service depends on the various functional and non-functional requirements. For example, highly interactive applications such as cloud gaming require a high quality level in terms of latency. Providers of cloud services have to face a highly competitive market. Cost advantages in cloud computing are primarily achieved by utilizing large centralized data centers at low-cost locations. However, this kind of resource provisioning impacts the quality of service of different types of services such as the aforementioned interactive multimedia services that possess strict quality of service constraints. Hence, infrastructure providers have to face a trade-off between cost reduction and adherence to the required Quality of Service (QoS) attributes. Apart from how services are provisioned, the way of consuming IT services also changed substantially over the last years. Mobile devices have begun to replace locally installed desktop computers at an accelerated pace. By utilizing these mobile devices, service providers are confronted with two major challenges: (i) a cellular network connection, which potentially causes a higher and more fluctuating latency and (ii) severely limited resources compared to local Personal Computers (PCs). These two aspects restrict the utilization of multimedia services, e. g., cloud gaming. To address these challenges, we present two novel approaches for (i) resource planning on a global level for multiple services with heterogeneous QoS characteristics and (ii) the augmentation of the centralized cloud infrastructure with locally installed resources to provide viable multimedia services to mobile devices. As the first major contribution, we introduce the Cloud Data Center Selection Problem (CDCSP). This problem describes the data center placement and resource selection on a global scale. We consider the role of a cloud provider, who aims to dimension resources in a cost-minimal fashion under the consideration of multiple services with different QoS attributes. Based on a mathematical optimization model, we propose the exact solution approach CDCSP-EXA.KOM. Due to the high complexity and the resulting computational effort to find the optimal solution, we propose and analyze four heuristic approaches to identify the most appropriate one for the given problem. As a first heuristic, we propose an approach based on linear program relaxation, CDCSP-REL.KOM. Furthermore, to take the specific structure of the problem into consideration, we develop the custom tailored CDCSP-PBST.KOM approach, which is based on a prioritized processing of demands and supplies. To further improve the results, we combine multiple heuristics to a Best-of-Breed approach, named CDCSP-BoB. KOM. Finally, as a metaheuristic improvement procedure, we propose the tabu search approach CDCSP-TS.KOM. To assess the practical applicability and performance of these optimization approaches, we analyze them in detail and compare their performance in a quantitatively. The second major contribution of this work addresses the augmentation of the centralized cloud infrastructure with local resources to provide services to mobile devices. Therefore, we formulate the Dynamic Cloudlet Placement and Selection Problem (DCPSP), as a multi-period resource planning problem, which includes local characteristics, such as space for hosting resources and available network bandwidth. We focus on a cloud provider who aims to augment the centralized infrastructure using local resources to improve the QoS guarantees for mobile used applications. We formalize the problem as a mathematical optimization model and derive the exact solution approach DCPSP-EXA.KOM. Due to the high complexity that is caused by an optimization over many time slots, we propose the heuristic optimization approach DCPSP-HEU.KOM. We assess the performance of these two approaches by the means of quantitative evaluation. In summary, the contributions of this thesis provide the means for a cost-efficient and QoS-aware resource selection in cloud infrastructures. We contribute the formalization of the problems and algorithms to support the efficient planning of future cloud infrastructures in environments with a multitude of heterogeneous services on a global scale. Furthermore, to enable mobile users to consume multimedia cloud services, we propose an optimization model and algorithms to augment a global centralized infrastructure by local resource units

    Digital Business Models

    Get PDF
    This book provides an overview of how digital players create, exchange and capture value thanks to digital technologies. It describes the key characteristics of various digital business models using different business archetypes. Each chapter is illustrated with examples or mini-case studies and also comprises a toolbox describing strategic tools, canvases and frameworks that help managers analyse a situation and formulate proactive solutions

    Value capture and embeddedness in social-purpose-driven ecosystems : A multiple-case study of European digital healthcare platforms

    Get PDF
    We aim to answer the question of the effect of a social-purpose-driven ecosystem on value capture from digital health platforms. We call the social-purpose-driven ecosystem a phenomenon which seeks social impact before profits and aims to empower citizens for individual and collective well-being. Thus, capturing value from digital platforms embedded in a social-purpose-driven ecosystem fundamentally differs from profiting from purely commercial digital platforms and poses significant challenges to platform owners and public policy. Previous research has focused mainly on profiting from technological innovations but has yet to consider the contextual role of the social-purpose-driven ecosystem. We applied the Profiting from Innovation (PFI) framework to fill this gap. Furthermore, based on the results of the multiple-case study of five European digital healthcare platforms, we extend the PFI framework. As a result, we define four unique contingencies which enable value capture from digital healthcare platforms embedded in a social-purpose-driven ecosystem: 1) multilayer value creation, (2) multipurpose complementary assets, (3) emerging dominant design, and (4) distributed socio-economic returns mechanisms. The study offers two managerial and policy contributions. First, it calls on platform owners and policymakers to acknowledge the contextual effect of a social-purpose-driven ecosystem. Second, multilayer value creation, multiple complementary assets, dominant design and distributed socio-economic returns mechanisms can positively affect capturing value from digital healthcare platforms.publishedVersionPeer reviewe

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    A REVIEW STUDY OF EUROPEAN R&D PROJECTS FOR SATELLITE COMMUNICATIONS IN 5G/6G ERA

    Get PDF
    Κατά τις τελευταίες δεκαετίες τα δορυφορικά συστήματα τηλεπικοινωνιών έχουν προσφέρει μια γκάμα από πολυμεσικές υπηρεσίες όπως δορυφορική τηλεόραση, δορυφορική τηλεφωνία και ευρυζωνική πρόσβαση στο διαδίκτυο. Οι μακροπρόθεσμες τεχνολογικές αναβαθμίσεις σε συνδυασμό με την προσθήκη νέων δορυφορικών συστημάτων γεωστατικής και ελλειπτικής τροχιάς και με την ενσωμάτωση τεχνολογιών πληροφορικής έχουν ωθήσει την αύξηση του μέγιστου εύρους των δορυφόρων στο 1Gbps σε μεμονωμένους δορυφόρους ενώ σε διάταξη αστερισμού μπορούν να ξεπεράσουν το 1 Tbps. Σε συνδυασμό με την μείωση του χρόνου απόκρισης σε ρυθμούς ανταγωνιστικούς με τις χερσαίες υποδομές ανοίγουν νέες ευκαιρίες και νέους ρόλους εντός ενός οικοσυστήματος ετερογενούς δικτύων 5ης γενιάς. Σε αυτήν την διατριβή, αξιολογούμε επιδοτούμενα επιστημονικά προγράμματα έρευνας και ανάπτυξης της Ευρωπαϊκής Επιτροπής Διαστήματος (ESA) και του προγράμματος επιδότησης Horizon 2020 της Ευρωπαϊκής Ένωσης, προκειμένου να εξηγήσουμε τις δυνατότητες των δορυφόρων εντός ενός ετερογενούς δικτύου 5ης γενιάς, αναφέρουμε συγκεκριμένα αυτά που αφορούν την εξέλιξη των δορυφορικών ψηφιακών συστημάτων και την ικανότητα ενσωμάτωσης τους σε τωρινές αλλά και μελλοντικές υποδομές χερσαίων τηλεπικοινωνιακών δικτύων μέσω της εμφάνισης νέων τεχνολογιών στις ηλεκτρονικές και οπτικές επικοινωνίες αέρος μαζί με την εμφάνιση τεχνολογιών πληροφορικής όπως της δικτύωσης βασισμένης στο λογισμικό και της εικονικοποίησης λειτουργιών δικτύου. Αναφερόμαστε στους στόχους του κάθε project ξεχωριστά και κατηγοριοποιημένα στους ακόλουθους τομείς έρευνας: -Συσσωμάτωση των δορυφόρων με τα επίγεια δίκτυα 5ης γενιάς με οργανωμένες μελέτες και στρατηγικές -Ενσωμάτωση των τεχνολογιών δικτύωσης βασισμένης στο λογισμικό και εικονικοποίησης λειτουργιών δικτύου στο δορυφορικών τμήμα των δικτύων 5ης γενιάς -Ο ρόλος των δορυφόρων σε εφαρμογές του διαδικτύου των πραγμάτων σε συνάφεια με τα χερσαία δίκτυα 5ης γενιάς -Ο ρόλος των δορυφόρων στην δίκτυα διανομής πολυμεσικού περιεχομένου & η επιρροή των πρωτοκόλλων διαδικτύου στην ποιότητα υπηρεσίας χρήστη κατά την διάρκεια μιας δορυφορικής σύνδεσης. -Μελλοντικές βελτιώσεις και εφαρμογές στα δορυφορικά συστήματα με έμφαση στα μελλοντικά πρότυπα του φυσικό επιπέδου Στο τέλος διαθέτουμε ένα παράρτημα που αφορά τεχνικές αναλύσεις στην εξέλιξη του φυσικού επιπέδου των δορυφορικών συστημάτων, συνοδευόμενο με την συσχετιζόμενη βιβλιογραφία για περαιτέρω μελέτη.Over the last decades satellite telecommunication systems offer many types of multimedia services like Satellite TV, telephony and broadband internet access. The long-term technological evolutions occurred into state-of-the-art satellite systems altogether with the addition of new high throughput geostatic and non-geostatic systems, individual satellites can now achieve a peak bandwidth of up to Gbps, and with possible extension into satellite constellation systems the total capacity can reach up to Tbps. Supplementary, with systems latency being comparable to terrestrial infrastructures and with integration of several computer science technologies, satellite systems can achieve new & more advanced roles inside a heterogeneous 5G network’s ecosystem. In this thesis, we have studied European Space Agency (ESA’s) and European Union’s (EU) Horizon 2020 Research and Development (R&D) funded projects in order to describe the satellite capabilities within a 5G heterogeneous network, mentioning the impact of the evolution of digital satellite communications and furthermore the integration with the state-of the art & future terrain telecommunication systems by new technologies occurred through the evolution of electronic & free space optical communications alongside with the integration of computer science’s technologies like Software Defined Networking (SDN) and Network Function Virtualization (NFV). In order to describe this evolution we have studied the concepts of each individual project, categorized chronically and individual by its scientific field of research. Our main scientific trends for this thesis are: -Satellite Integration studies & strategies into the 5G terrestrial networks -Integration of SDN and NFV technologies on 5G satellite component -Satellite’s role in the Internet of Things applications over 5G terrestrial networks -Satellite’s role in Content Distribution Networks & internet protocols impact over user’s Quality of Experience (QoE) over a satellite link -The future proposals upon the evolution of Satellite systems by upcoming improvements and corresponding standards Finally, we have created an Annex for technical details upon the evolution of physical layer of the satellite systems with the corresponding bibliography of this thesis for future study

    EU Competition Law and Sustainability: key aspects from the Dutch ACM Draft Guidelines towards a unified EU approach

    Get PDF

    Valley Voice

    Get PDF
    corecore