406 research outputs found

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide

    Turbulence: Numerical Analysis, Modelling and Simulation

    Get PDF
    The problem of accurate and reliable simulation of turbulent flows is a central and intractable challenge that crosses disciplinary boundaries. As the needs for accuracy increase and the applications expand beyond flows where extensive data is available for calibration, the importance of a sound mathematical foundation that addresses the needs of practical computing increases. This Special Issue is directed at this crossroads of rigorous numerical analysis, the physics of turbulence and the practical needs of turbulent flow simulations. It seeks papers providing a broad understanding of the status of the problem considered and open problems that comprise further steps

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p

    Interactive Planning and Sensing for Aircraft in Uncertain Environments with Spatiotemporally Evolving Threats

    Get PDF
    Autonomous aerial, terrestrial, and marine vehicles provide a platform for several applications including cargo transport, information gathering, surveillance, reconnaissance, and search-and-rescue. To enable such applications, two main technical problems are commonly addressed.On the one hand, the motion-planning problem addresses optimal motion to a destination: an application example is the delivery of a package in the shortest time with least fuel. Solutions to this problem often assume that all relevant information about the environment is available, possibly with some uncertainty. On the other hand, the information gathering problem addresses the maximization of some metric of information about the environment: application examples include such as surveillance and environmental monitoring. Solutions to the motion-planning problem in vehicular autonomy assume that information about the environment is available from three sources: (1) the vehicle’s own onboard sensors, (2) stationary sensor installations (e.g. ground radar stations), and (3) other information gathering vehicles, i.e., mobile sensors, especially with the recent emphasis on collaborative teams of autonomous vehicles with heterogeneous capabilities. Each source typically processes the raw sensor data via estimation algorithms. These estimates are then available to a decision making system such as a motion- planning algorithm. The motion-planner may use some or all of the estimates provided. There is an underlying assumption of “separation� between the motion-planning algorithm and the information about environment. This separation is common in linear feedback control systems, where estimation algorithms are designed independent of control laws, and control laws are designed with the assumption that the estimated state is the true state. In the case of motion-planning, there is no reason to believe that such a separation between the motion-planning algorithm and the sources of estimated environment information will lead to optimal motion plans, even if the motion planner and the estimators are themselves optimal. The goal of this dissertation is to investigate whether the removal of this separation, via interactive motion-planning and sensing, can significantly improve the optimality of motion- planning. The major contribution of this work is interactive planning and sensing. We consider the problem of planning the path of a vehicle, which we refer to as the actor, to traverse a threat field with minimum threat exposure. The threat field is an unknown, time- variant, and strictly positive scalar field defined on a compact 2D spatial domain – the actor’s workspace. The threat field is estimated by a network of mobile sensors that can measure the threat field pointwise. All measurements are noisy. The objective is to determine a path for the actor to reach a desired goal with minimum risk, which is a measure sensitive not only to the threat exposure itself, but also to the uncertainty therein. A novelty of this problem setup is that the actor can communicate with the sensor network and request that the sensors position themselves in a procedure we call sensor reconfiguration such that the actor’s risk is minimized. This work continues with a foundation in motion planning in time-varying fields where waiting is a control input. Waiting is examined in the context of finding an optimal path with considerations for the cost of exposure to a threat field, the cost of movement, and the cost of waiting. For example, an application where waiting may be beneficial in motion-planning is the delivery of a package where adverse weather may pose a risk to the safety of a UAV and its cargo. In such scenarios, an optimal plan may include “waiting until the storm passes.� Results on computational efficiency and optimality of considering waiting in path- planning algorithms are presented. In addition, the relationship of waiting in a time- varying field represented with varying levels of resolution, or multiresolution is studied. Interactive planning and sensing is further developed for the case of time-varying environments. This proposed extension allows for the evaluation of different mission windows, finite sensor network reconfiguration durations, finite planning durations, and varying number of available sensors. Finally, the proposed method considers the effect of waiting in the path planner under the interactive planning and sensing for time-varying fields framework. Future work considers various extensions of the proposed interactive planning and sensing framework including: generalizing the environment using Gaussian processes, sensor reconfiguration costs, multiresolution implementations, nonlinear parameters, decentralized sensor networks and an application to aerial payload delivery by parafoil

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF
    • …
    corecore