3,400 research outputs found

    A Pragmatic Approach to DHT Adoption

    Full text link
    Despite the peer-to-peer community's obvious wish to have its systems adopted, specific mechanisms to facilitate incremental adoption have not yet received the same level of attention as the many other practical concerns associated with these systems. This paper argues that ease of adoption should be elevated to a first-class concern and accordingly presents HOLD, a front-end to existing DHTs that is optimized for incremental adoption. Specifically, HOLD is backwards-compatible: it leverages DNS to provide a key-based routing service to existing Internet hosts without requiring them to install any software. This paper also presents applications that could benefit from HOLD as well as the trade-offs that accompany HOLD. Early implementation experience suggests that HOLD is practical

    Robust execution of service workflows using redundancy and advance reservations

    No full text
    In this paper, we develop a novel algorithm that allows service consumers to execute business processes (or workflows) of interdependent services in a dependable manner within tight time-constraints. In particular, we consider large inter-organisational service-oriented systems, where services are offered by external organisations that demand financial remuneration and where their use has to be negotiated in advance using explicit service-level agreements (as is common in Grids and cloud computing). Here, different providers often offer the same type of service at varying levels of quality and price. Furthermore, some providers may be less trustworthy than others, possibly failing to meet their agreements. To control this unreliability and ensure end-to-end dependability while maximising the profit obtained from completing a business process, our algorithm automatically selects the most suitable providers. Moreover, unlike existing work, it reasons about the dependability properties of a workflow, and it controls these by using service redundancy for critical tasks and by planning for contingencies. Finally, our algorithm reserves services for only parts of its workflow at any time, in order to retain flexibility when failures occur. We show empirically that our algorithm consistently outperforms existing approaches, achieving up to a 35-fold increase in profit and successfully completing most workflows, even when the majority of providers fail
    corecore